Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nat Med ; 78(3): 488-504, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530577

RESUMO

Osteoporosis (OP) is closely related to iron overload. Bajitianwan (BJTW) is a traditional Chinese medicine formulation used for treating senile diseases such as dementia and osteoporosis. Modern pharmacological researches have found that BJTW has beneficial effect on bone loss and memory impairment in aging rats. This paper aimed to explore the role and mechanism of BJTW in ameliorating iron overload-induced bone loss. Furthermore, BJTW effectively improved the bone micro-structure of the femur in mice, and altered bone metabolism biomarkers alkaline phosphatase (ALP) and osteocalcin (OCN) in serum, as well as oxidative indexes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) glutathione (GSH) and malondialdehyde (MDA) in liver. As for network pharmacology, 73 components collected from BJTW regulated 99 common targets merged in the BJTW and OP. The results of RNA-seq indicated that there were 418 potential targets in BJTW low dose group (BJTW-L) and 347 potential targets in BJTW high dose group (BJTW-H). Intriguingly, both PI3K-AKT signaling pathway and the AGEs-RAGE signaling pathway were contained in the KEGG pathways enrichment results of network pharmacology and transcriptomics, which were considered as the potential mechanism. Additionally, we verified that BJTW regulated the expression of related proteins in RAGE/PI3K-AKT pathways in MC3T3-E1 cells. In summary, BJTW has potent effect on protecting against iron overload-induced OP, and its mechanism may be related to the activation of the RAGE/PI3K-AKT signaling pathways.


Assuntos
Medicamentos de Ervas Chinesas , Sobrecarga de Ferro , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Sobrecarga de Ferro/tratamento farmacológico , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Masculino , Osteoporose/tratamento farmacológico , Perfilação da Expressão Gênica
2.
J Ethnopharmacol ; 319(Pt 2): 117211, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37739100

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW: This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS: This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS: PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS: Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.


Assuntos
Portulaca , Animais , Criança , Humanos , Etnofarmacologia , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Portulaca/química
3.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003376

RESUMO

Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.


Assuntos
Reabsorção Óssea , Osteogênese , Humanos , Osteogênese/genética , Transdução de Sinais , Osteoclastos/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , NF-kappa B , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição NFATC/genética , Diferenciação Celular/genética , Ligante RANK
4.
Am J Chin Med ; 51(8): 1957-1981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37884447

RESUMO

The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.


Assuntos
Microbioma Gastrointestinal , Osteoporose , Humanos , Medicina Tradicional Chinesa , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Densidade Óssea , Inflamação , Estrogênios
5.
J Pharm Pharmacol ; 74(7): 1017-1026, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353176

RESUMO

OBJECTIVE: Xanthohumol (XAN), a natural isoflavone from Humulus lupulus L., possesses biological activities on relieving oxidative stress and osteoporosis (OP). This study aimed to evaluate the antioxidative and osteoprotective effect of XAN on Aß-injured osteoblasts, and explore its underlying mechanism. METHODS: Osteoblasts were pretreated with XAN followed by stimulation with Aß1-42. Cell proliferation, ALP activity, bone mineralization and bone formation index were measured. Apoptosis and reactive oxygen species (ROS) were analysed with flow cytometer. PI3K inhibitor LY294002 or siRNA-Nrf2 was added and transfected in osteoblasts, to further confirm whether the pathway participated in the regulation of XAN-induced cytoprotection. KEY FINDINGS: XAN markedly improved the proliferation, differentiation and mineralization of Aß-injured osteoblasts. Additionally, XAN reduced cell apoptosis rate and ROS level, and increased the expression of p-AKT, Nrf2, NQO1, HO-1 and SOD-2. More importantly, LY294002 or siNrf2 abolished the beneficial effect of XAN on osteoblasts activity and decreased the PI3K expression and inhibited its downstream proteins, indicating XAN activated PI3K/AKT/Nrf2 pathway in Aß-injured osteoblasts. CONCLUSION: It was the first time to reveal the antioxidative and osteoprotective effect of XAN through regulating PI3K/AKT/Nrf2 pathway in Aß-injured osteoblasts, which provides reference for the clinical application of XAN in the prevention and treatment of OP.


Assuntos
Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Apoptose , Flavonoides , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Propiofenonas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Bone Miner Metab ; 40(3): 375-388, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35106609

RESUMO

INTRODUCTION: Osteoporosis is closely related to iron metabolism. This study aimed to investigate whether hops extract (HLE) and its active component xanthohumol (XAN) could ameliorate bone loss caused by iron overload, and explored its potential mechanism. MATERIALS AND METHODS: Iron overload mice induced by iron dextran (ID) were used in vivo, and were treated with HLE and XAN for 3 months. Bone micro-structure and bone morphology parameters were determined by Micro-CT and TRAP staining. Bone metabolism markers and oxidation indexes in serum and bone tissue were evaluated. For in vitro experiment, bone formation indexes were determined. Moreover, the expression of key proteins in protein kinase B (Akt)/glycogen synthetase kinase 3ß (GSK3ß)/nuclear factor E2-related (Nrf2) pathway was evaluated by Western blotting. RESULTS: HLE and XAN effectively improved the bone micro-structure of the femur in mice, altered bone metabolism biomarkers, and regulated the expression of proteins related to bone metabolism. Additionally, they significantly promoted cell proliferation, runt-related gene 2 (Runx2) expression, and increased ALP activity in ID-induced osteoblasts. Moreover, HLE and XAN markedly inhibited the increase of oxidative stress caused by iron overload in vivo and in vitro. Further studies showed that they significantly up-regulated the expression of p-Akt, p-GSK3ß, nuclear-Nrf2, NAD(P)H: quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1) in ID-induced osteoblasts. CONCLUSION: These findings indicated hops and xanthohumol could ameliorate bone loss induced by iron overload via activating Akt/GSK3ß/Nrf2 pathway, which brought up a novel sight for senile osteoporosis therapy.


Assuntos
Humulus , Sobrecarga de Ferro , Animais , Flavonoides , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Humulus/metabolismo , Ferro/farmacologia , Sobrecarga de Ferro/tratamento farmacológico , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Propiofenonas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
7.
Chin J Integr Med ; 27(1): 31-38, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30919241

RESUMO

OBJECTIVE: To systematically evaluate the protective effects of Humulus lupulus L. extract (HLE) on osteoporosis mice. METHODS: In vivo experiment, a total of 35 12-week-old female ICR mice were equally divided into 5 groups: the sham control group (sham); the ovariectomy with vehicle group (OVX); the OVX with estradiol valerate [EV, 0.2 mg/(kg•d)] the OVX with low- or high-dose HLE groups [HLE, 1 g/(kg•d) and 3 g/(kg•d)], 7 in each group. Treatment began 1 week after the ovariectomized surgery and lasted for 12 weeks. Bone mass and trabecular bone mircoarchitecture were evaluated by micro computed tomography, and bone turnover markers in serum were evaluated using enzyme-linked immunosorbent assay (ELISA) kits. In vitro experiment, osteoblasts and osteoclasts were treated with HLE at doses of 0, 4, 20 and 100 µg/mL. Biomarkers for bone formation in osteoblasts and bone resorption in osteoclasts were analyzed. RESULTS: Compared with the OVX group, HLE exerted bone protective effects by the increase of estradiol (P<0.05), the improvement of cancellous bone structure, bone mineral density (P<0.01) and the reduction of serum alkaline phosphatase (ALP), tartrate resistant acid phosphatase (TRAP), bone gla-protein, c-terminal telopeptides of type I collagen (CTX-I) and deoxypyridinoline levels (P<0.01 for all). In vitro experiment, compared with the control group, HLE at 20 µg/mL promoted the cell proliferation (P<0.01), and increased the expression of bone morphogenetic protein-2 and osteopontin levels in osteoblasts (both P<0.05). HLE at 100 µg/mL increased the osteoblastic ALP activities, and HLE at all dose enhanced the extracellular matrix mineralization (both P<0.01). Furthermore, compared with the control group, HLE at 20 µg/mL and 100 µg/mL inhibited osteoclastic TRAP activity (P<0.01), and reduced the expression of matrix metalloproteinase-9 and cathepsin K (both P<0.05). CONCLUSION: HLE may protect against bone loss, and have potentials in the treatment of osteoporosis.


Assuntos
Humulus , Osteoporose , Animais , Camundongos , Camundongos Endogâmicos ICR , Osteoblastos , Osteoclastos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Ovariectomia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA