Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
J Control Release ; 376: 67-78, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39368706

RESUMO

Glioblastoma multiforme (GBM), the most aggressive intracranial neoplasm, remains incurable at present, primarily due to drug resistance, which significantly contributes to elevated recurrence rates and dismal prognosis. Signal transducer and activator of transcription 3 (STAT3) is a critical gene closely associated with GBM drug resistance and the progression of GBM stem cells (GSCs), making it a promising therapeutic target. In this study, we developed cancer cell membrane-cloaked biomimetic nanoparticles to deliver STAT3 siRNA to reverse drug resistance in homologous GBM. These biomimetic nanoparticles leverage homotypic targeting, rapid endosome escape, and fast siRNA release, leading to efficient in vitro STAT3 knockdown in both temozolomide-resistant U251-TR cells and X01 GSCs. Moreover, benefited from the membrane functionalization, significant prolonged blood circulation, improved blood brain barrier (BBB) penetration and GBM tumor accumulation are achieved by these siRNA biomimetic nanoparticles. Importantly, these nanoparticles effectively inhibit tumor proliferation, significantly extending median survival time in orthotopic U251-TR (43.5 d versus 20 d for PBS control) and X01 GSC-bearing mouse xenografts (52 d versus 19.5 d for PBS control). Altogether, this biomimetic siRNA platform offers a promising strategy for gene therapy targeting drug-resistant GBM.

2.
Clin Rheumatol ; 43(11): 3515-3523, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39235498

RESUMO

OBJECTIVE: This work aims to investigate whether RIP2 silencing in naive CD4+ T cells from lupus-prone mice impacts Th17 cell activity or differentiation in vitro. METHODS: Naive CD4+ T cells isolation from MRL/lpr mice's spleens. Three RNA interference target sequences of RIP2 were packaged with lentivirus and transfected into naive CD4+ T cells. The shRIP2 with the highest interference efficiency was selected and transfected into naive CD4+ T cells. Naive CD4+ T cells were cultured under conventional (TGF-ß1 and IL-6) and pathogenic (IL-6, IL-23, IL-1ß) differentiation environments, respectively. Then, RT-qPCR, Western blot or Flow Cytometry were used for measuring the amounts of RIP2 and IL-17 and the differentiation of Th17 cells in two settings. RESULTS: Under the conventional Th17 (cTh17) cell differentiation environment (TGF-ß1 and IL-6), RIP2 deficiency is linked to decreased IL-17A levels (1.00 ± 0.03 vs 0.80 ± 0.03) and attenuated cTh17 cell (2.46 ± 0.08 vs 0.78 ± 0.03) differentiation (all, P < 0.05). Under the pathogenic Th17 (pTh17) cell environment (IL-1ß, IL-23, IL-6), RIP2 deficiency is linked to elevated IL-17A levels (1.03 ± 0.05 vs 1.63 ± 0.07) and enhanced pTh17 cell (3.69 ± 0.19 vs 5.49 ± 0.10) differentiation (all, P < 0.05). CONCLUSION: Our data suggest that RIP2 inhibition induces preferential differentiation of naive CD4+ T cells to pathogenic Th17 cells, while being able to upregulate IL-17A levels in the context of pTh17 cell differentiation. Our study opens up new research areas to reveal the underlying mechanisms and potential therapeutic targets for the prevention and treatment of SLE patients. Key Points • Silencing of RIP2 in naive CD4+ T cells from lupus-prone mice promotes pathogenic Th17 (pTh17) cell differentiation and IL-17A production under pTh17 cell (IL-1ß, IL-23, and IL-6) conditions. • RIP2 deficiency in naive CD4+ T cells reduces conventional Th17 (cTh17) cell differentiation and IL-17A production under cTh17 cell (TGF-ß1 and IL-6) conditions. • RIP2-deficient naive CD4+ T cells preferentially differentiate towards pTh17 cells rather than cTh17 cells in vitro. • Inhibition of RIP2 may be involved in the development of SLE via effects on Th17/IL-17.


Assuntos
Linfócitos T CD4-Positivos , Diferenciação Celular , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Células Th17 , Animais , Células Th17/imunologia , Células Th17/metabolismo , Camundongos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Interleucina-17/metabolismo , Camundongos Endogâmicos MRL lpr , Interleucina-6/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Feminino , Células Cultivadas , Interleucina-23/metabolismo
3.
Cell Mol Life Sci ; 81(1): 402, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276234

RESUMO

The excessive inflammation caused by the prolonged activation of Toll-like receptor 4 (TLR4) and its downstream signaling pathways leads to sepsis. CD14-mediated endocytosis of TLR4 is the key step to control the amount of TLR4 on cell membrane and the activity of downstream pathways. The actin cytoskeleton is necessary for receptor-mediated endocytosis, but its role in TLR4 endocytosis remains elusive. Here we show that Tropomodulin 1 (Tmod1), an actin capping protein, inhibited lipopolysaccharide (LPS)-induced TLR4 endocytosis and intracellular trafficking in macrophages. Thus it resulted in increased surface TLR4 and the upregulation of myeloid differentiation factor 88 (MyD88)-dependent pathway and the downregulation of TIR domain-containing adaptor-inducing interferon-ß (TRIF)-dependent pathway, leading to the enhanced secretion of inflammatory cytokines, such as TNF-α and IL-6, and the reduced secretion of cytokines, such as IFN-ß. Macrophages deficient with Tmod1 relieved the inflammatory response in LPS-induced acute lung injury mouse model. Mechanistically, Tmod1 negatively regulated LPS-induced TLR4 endocytosis and inflammatory response through modulating the activity of CD14/Syk/PLCγ2/IP3/Ca2+ signaling pathway, the reorganization of actin cytoskeleton, and the membrane tension. Therefore, Tmod1 is a key regulator of inflammatory response and immune functions in macrophages and may be a potential target for the treatment of excessive inflammation and sepsis.


Assuntos
Endocitose , Inflamação , Lipopolissacarídeos , Macrófagos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptor 4 Toll-Like , Tropomodulina , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Células RAW 264.7 , Receptor 4 Toll-Like/metabolismo , Tropomodulina/metabolismo , Tropomodulina/genética
4.
Front Immunol ; 15: 1347770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267750

RESUMO

Introduction: The connection between aging and cancer is complex. Previous research has highlighted the association between the aging process of lung adenocarcinoma (LUAD) cells and the immune response, yet there remains a gap in confirming this through single-cell data validation. Here, we aim to develop a novel aging-related prognostic model for LUAD, and verify the alterations in the genome and immune microenvironment linked to cellular senescence. Methods: We integrated a comprehensive collection of senescence genes from the GenAge and CellAge databases and employed the least absolute shrinkage and selection operator (LASSO) Cox analysis to construct and validate a novel prognostic model for LUAD. This model was then utilized to examine the relationship between aging, tumor somatic mutations, and immune cell infiltration. Additionally, we explored the heterogeneity of senescence and intercellular communication within the LUAD tumor microenvironment (TME) through single-cell transcriptomic data analysis. Results: By exploring the expression profiles of 586 cellular senescence-related genes in 428 LUAD patients, we constructed an aging-related genes (ARGs) risk model included 10 ARGs and validated it as an independent prognostic predictor for LUAD patients. Notably, patients with low aging scores (LAS group) exhibited better survival, lower tumor mutation burden (TMB), lower somatic mutation frequency, lower tumor proliferation rate, and an immune activated phenotype compared to patients with high aging scores (HAS group). While the HAS group was enriched in tumor cells and showed a lower infiltration of CD8-CCR7, CD8- CXCL13, CD8-GNLY, FCGR3A NK cells, XCL1 NK cells, plasma cell (PC) and other immune subsets. Furthermore, the SPP1 and TENASCIN pathways, associated with tumor immune escape and tumor progression, were also enriched in the HAS group. Additionally, our study also indicated that senescence levels were heterogeneous in the LUAD tumor microenvironment (TME), especially with tumor cells in the LAS group showing higher age scores compared to those in the HAS group. Conclusions: Collectively, our findings underscore that ARRS through ARGs serves as a robust biomarker for the prognosis in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Senescência Celular , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Senescência Celular/genética , Senescência Celular/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Prognóstico , Biomarcadores Tumorais/genética , Mutação , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Idoso , Envelhecimento/imunologia , Envelhecimento/genética
6.
Nutr Metab Cardiovasc Dis ; 34(11): 2489-2497, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39174429

RESUMO

BACKGROUND AND AIMS: Risk factor modification may decrease the risk of cardiovascular disease (CVD). Whether risk factor modification can mitigate the effect of hyperuricemia on CVD is unclear. This study aimed to investigate the risk of CVD among individuals with hyperuricemia, according to risk factors on target, compared with controls without hyperuricemia. METHODS AND RESULTS: This prospective study included 91,722 participants free of CVD at baseline (2006-2007) of the Kailuan study. Individuals with hyperuricemia were categorized according to the number of seven selected risk factors within the guideline-recommended target range (nonsmoking, physical activity, healthy diet, guideline-recommended levels of body mass index, blood pressure, fasting blood glucose, and total cholesterol). During a median follow-up of 13.00 years, 671 out of 6740 individuals (9.96%) with hyperuricemia and 6301 out of 84,982 control subjects (7.41%) had incident CVD. Compared with control subjects without hyperuricemia, individuals with hyperuricemia who had 4 or 5 to 7 risk factors on target had no significant excess CVD risk, the hazard ratio (HR) (95% confidence internal [CI]) was 0.93 (0.79-1.10) and 0.88 (0.71-1.10), respectively. Among individuals with hyperuricemia, excess CVD risk decreased stepwise for a higher number of risk factors on target, the HR of CVD associated with per additional risk factor within target range was 0.82 (95% CI, 0.77-0.87). Similar results were yielded for CVD subtypes. CONCLUSIONS: Among individuals with hyperuricemia, excess CVD risk decreased stepwise for a higher number of risk factors within target.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Fatores de Risco de Doenças Cardíacas , Hiperuricemia , Ácido Úrico , Humanos , Hiperuricemia/epidemiologia , Hiperuricemia/sangue , Hiperuricemia/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/prevenção & controle , Estudos Prospectivos , Medição de Risco , Adulto , China/epidemiologia , Incidência , Biomarcadores/sangue , Fatores de Tempo , Ácido Úrico/sangue , Comportamento de Redução do Risco , Dieta Saudável , Prognóstico , Fatores de Proteção , Idoso , Fumar/epidemiologia , Fumar/efeitos adversos , Exercício Físico , Glicemia/metabolismo , Fatores de Risco
7.
ACS Omega ; 9(28): 30873-30883, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035962

RESUMO

Polymer/inorganic nanocomposite pour point depressant (PPD) is a research hotspot in the field of waxy crude oil pipelining. However, the inorganic nanoparticles need to be organically modified to improve their organic compatibility, and the inorganic nanoparticles are harmful to crude oil refining. In this work, organic PSMS with an average size of 1.4 µm was first synthesized by dispersion polymerization. Then, a new type of EVA/PSMS composite PPD was prepared by melt blending. The effects of the PSMS, EVA PPD, and composite PPD on the pour point, rheological properties, and wax precipitating properties of a specific waxy crude oil were investigated. It was found that adding 50-200 ppm of PSMS alone slightly improves the crude oil rheology through a spatial hindrance effect, while adding 20 ppm of EVA PPD greatly improves the crude oil rheology by modifying the wax crystal morphology. Compared with EVA PPD, adding 20 ppm composite PPD improves the crude oil rheology further, and the rheological improving ability first enhances and then weakens with increasing the PSMS content in the composite PPD (0-10 wt %). At the PSMS content in the composite PPD 5 wt %, the EVA/PSMS 5% composite PPD makes the wax crystal aggregates more compact, thus showing the strongest rheological improving ability. The EVA molecules could adsorb on the PSMS and form the composite particles, which further regulate the wax crystal morphology and then improve the crude oil rheology further.

8.
Heliyon ; 10(13): e33576, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040363

RESUMO

Upconverted UCNPs@mSiO2-NH2 nanoparticles were synthesized via thermal decomposition while employing the energy resonance transfer principle and the excellent near-infrared (NIR) light conversion property of up-conversion. The 808 nm NIR-excited photocontrolled nitric oxide (NO) release platform was successfully developed by electrostatically loading photosensitive NO donor Roussin's black salt (RBS) onto UCNPs@mSiO2-NH2, enabling the temporal, spatial, and dosimetric regulation of NO release for biological applications of NO. The release of NO ranged from 0.015⁓0.099 mM under the conditions of 2.0 W NIR excitation power, 20 min of irradiation time, and UCNPs@mSiO2-NH2&RBS concentration of 0.25⁓1.25 mg/mL. Therefore, this NO release platform has an anti-tumor effect. In vitro experiments showed that under the NIR light, at concentrations of 0.3 mg/mL and 0.8 mg/mL of UCNPs@mSiO2-NH2&RBS, the activity of glioma (U87) and chordoma (U-CH1) cells, as measured by CCK8 assay, was reduced to 50 %. Cell flow cytometry and Western Blot experiments showed that NO released from UCNPs@mSiO2-NH2&RBS under NIR light induced apoptosis in brain tumor cells. In vivo experiments employing glioma and chordoma xenograft mouse models revealed significant inhibition of tumor growth in the NIR and UCNPs@mSiO2-NH2&RBS group, with no observed significant side effects in the mice. Therefore, NO released by UCNPs@mSiO2-NH2&RBS under NIR irradiation can be used as a highly effective and safe strategy for brain tumor therapy.

9.
Mol Pharm ; 21(8): 3777-3799, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39038108

RESUMO

Central nervous system (CNS) diseases, ranging from brain cancers to neurodegenerative disorders like dementia and acute conditions such as strokes, have been heavily burdening healthcare and have a direct impact on patient quality of life. A significant hurdle in developing effective treatments is the presence of the blood-brain barrier (BBB), a highly selective barrier that prevents most drugs from reaching the brain. The tight junctions and adherens junctions between the endothelial cells and various receptors expressed on the cells make the BBB form a nonfenestrated and highly selective structure that is crucial for brain homeostasis but complicates drug delivery. Nanotechnology offers a novel pathway to circumvent this barrier, with nanoparticles engineered to ferry drugs across the BBB, protect drugs from degradation, and deliver medications to the designated area. After years of development, nanoparticle optimization, including sizes, shapes, surface modifications, and targeting ligands, can enable nanomaterials tailored to specific brain drug delivery settings. Moreover, smart nano drug delivery systems can respond to endogenous and exogenous stimuli that control subsequent drug release. Here, we address the importance of the BBB in brain disease treatment, summarize different delivery routes for brain drug delivery, discuss the cutting-edge nanotechnology-based strategies for brain drug delivery, and further offer valuable insights into how these innovations in nanoparticle technology could revolutionize the treatment of CNS diseases, presenting a promising avenue for noninvasive, targeted therapeutic interventions.


Assuntos
Barreira Hematoencefálica , Encefalopatias , Sistemas de Liberação de Medicamentos , Nanopartículas , Nanotecnologia , Humanos , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Encefalopatias/tratamento farmacológico , Nanotecnologia/métodos , Nanopartículas/química , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Fármacos por Nanopartículas/química
10.
Photodiagnosis Photodyn Ther ; 48: 104231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821238

RESUMO

BACKGROUND: Chordoma is a rare congenital low-grade malignant tumor characterized by infiltrative growth. It often tends to compress important intracranial nerves and blood vessels, making its surgical treatment extremely difficult. Besides, the efficacy of radiotherapy and chemotherapy is limited. The photosensitizer hematoporphyrin derivative (HPD) can emit red fluorescence under 405 nm excitation and produce reactive oxygen species for tumor therapy under 630 nm excitation. Herein, we investigated the effects of the photosensitizer hematoporphyrin derivative (HPD) on different cell lines of chordoma and xenograft tumors under 405 nm and 630 nm excitation. METHODS: The photosensitizer hematoporphyrin derivative (HPD) and Two different chordoma cell lines (U-CH1, JHC7) were used for the test. The in vitro experiments were as follows: (1) the fluorescence intensity emitted by chordoma cells excited by different 405 nm light intensities was observed under a confocal microscope; (2) the Cell Counting Kit-8 (CCK-8) assay was performed to detect the effects of different photosensitizer concentrations and 630 nm light energy densities on the activity of chordoma cells. In the in vivo experiments, (3) Fluorescence visualization of chordoma xenograft tumors injected with photosensitizer via tail vein under 405 nm excitation; (4) Impact of 630 nm excitation of photosensitizer on the growth of chordoma xenograft tumors. RESULTS: (1) The photosensitizers in chordoma cells and chordoma xenografts of nude mice were excited by 405 nm to emit red fluorescence; (2) 630 nm excitation photosensitizer reduces chordoma cell activity and inhibits chordoma xenograft tumor growth in chordoma nude mice. CONCLUSION: Photodynamic techniques mediated by the photosensitizer hematoporphyrin derivatives can be used for the diagnosis and treatment of chordoma.


Assuntos
Cordoma , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Cordoma/tratamento farmacológico , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Derivado da Hematoporfirina/farmacologia , Camundongos Nus , Hematoporfirinas/farmacologia , Hematoporfirinas/uso terapêutico
11.
Int J Clin Health Psychol ; 24(2): 100468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803683

RESUMO

Background: A relatively new computational approach called trial-level bias score (TL-BS) has shown that attentional bias to smoking-related stimuli in smokers fluctuates temporally, trial by trial, during attention tasks. Here, we investigated the reliability of using TL-BS values to assess attentional bias and the electrophysiology mechanisms undergirding fluctuations in attentional bias among smokers. Method: In total, 26 male smokers and 26 male non-smokers performed a dot-probe task in Experiment 1. In Experiment 2, an additional 23 male smokers and 23 male non-smokers performed the same task while undergoing single-pulse transcranial magnetic stimulation, which was used to investigate corticospinal excitability. Results: It showed that assessing TL-BS parameters for reaction time (RT) was more reliable than calculating the traditional mean attentional bias score; however, this superior reliability was no longer apparent after controlling for general RT variability. There was a significant difference between smokers and non-smokers in TL-BS parameters calculated for both RT and motor-evoked potential (MEP) amplitude. However, TL-BS parameters for RT and MEP amplitude were strongly correlated with general RT variability and general MEP variability, respectively. Conclusions: Our findings indicated that TL-BS parameters may not be ideal for measuring attentional bias at either the behavioral or electrophysiology level; however, larger general RT and MEP amplitude variabilities in non-smokers may indicate dysregulation of cognitive processing in smokers.

12.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609049

RESUMO

INTRODUCTION: Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES: To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS: Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS: We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to ß-catenin, thereby promoting nuclear translocation and transcriptional activity of ß-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/ß-catenin complex. This complex further amplifies H. pylori-induced ß-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION: Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.

13.
Int Immunopharmacol ; 132: 111935, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599096

RESUMO

Finding novel therapeutic modalities, improving drug delivery efficiency and targeting, and reducing the immune escape of tumor cells are currently hot topics in the field of tumor therapy. Bacterial therapeutics have proven highly effective in preventing tumor spread and recurrence, used alone or in combination with traditional therapies. In recent years, a growing number of researchers have significantly improved the targeting and penetration of bacteria by using genetic engineering technology, which has received widespread attention in the field of tumor therapy. In this paper, we provide an overview and assessment of the advancements made in the field of tumor therapy using genetically engineered bacteria. We cover three major aspects: the development of engineered bacteria, their integration with other therapeutic techniques, and the current state of clinical trials. Lastly, we discuss the limitations and challenges that are currently being faced in the utilization of engineered bacteria for tumor therapy.


Assuntos
Bactérias , Engenharia Genética , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Bactérias/genética , Imunoterapia/métodos , Sistemas de Liberação de Medicamentos
14.
Int J Obes (Lond) ; 48(8): 1103-1109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637718

RESUMO

BACKGROUND: Obesity and metabolic syndrome (MetS) have been acknowledged to commonly co-exist and lead to increased risks of stroke, whereas the association between various BMI-based metabolic phenotypes and development of intracranial atherosclerotic stenosis (ICAS) remained controversial. METHODS: A total of 5355 participants were included from the Asymptomatic Polyvascular Abnormalities Community (APAC) study. Participants were categorized into six groups according to their body mass index (BMI) and MetS status. ICAS was assessed using transcranial Doppler (TCD) Ultrasonography. Logistic regression was employed to evaluate the association between BMI-based metabolic phenotypes and ICAS. RESULTS: 704 participants were diagnosed with ICAS. Compared to the metabolic healthy normal weight (MH-NW) group, the metabolic unhealthy normal weight (MUH-NW) group demonstrated a higher risk of ICAS (full-adjusted odds ratio [OR], 1.91; 95% confidence interval [CI], 1.42-2.57), while no significant association was observed in the metabolic unhealthy obesity (MUO) group (full-adjusted OR, 1.07; 95% CI, 0.70-1.65) and other metabolic healthy groups regardless of BMI. The results were consistent across gender, age, smoking, alcohol intake, and physical activity subgroups. CONCLUSION: The present study suggested that MUH-NW individuals had a significant association with increased risk of ICAS compared with MH-NW individuals.


Assuntos
Índice de Massa Corporal , Arteriosclerose Intracraniana , Síndrome Metabólica , Fenótipo , Humanos , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Arteriosclerose Intracraniana/epidemiologia , Prevalência , Síndrome Metabólica/epidemiologia , Idoso , Obesidade/epidemiologia , Obesidade/complicações , Fatores de Risco , Adulto , Ultrassonografia Doppler Transcraniana
15.
Front Nutr ; 11: 1266690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450235

RESUMO

Precision nutrition and nutrigenomics are emerging in the development of therapies for multiple diseases. The ketogenic diet (KD) is the most widely used clinical diet, providing high fat, low carbohydrate, and adequate protein. KD produces ketones and alters the metabolism of patients. Growing evidence suggests that KD has therapeutic effects in a wide range of neuronal diseases including epilepsy, neurodegeneration, cancer, and metabolic disorders. Although KD is considered to be a low-side-effect diet treatment, its therapeutic mechanism has not yet been fully elucidated. Also, its induced keto-response among different populations has not been elucidated. Understanding the ketone metabolism in health and disease is critical for the development of KD-associated therapeutics and synergistic therapy under any physiological background. Here, we review the current advances and known heterogeneity of the KD response and discuss the prospects for KD therapy from a precision nutrition perspective.

16.
Cancer Lett ; 586: 216695, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325769

RESUMO

Given the limitations of the response rate and efficacy of immune checkpoint inhibitors (ICIs) in clinical applications, exploring new therapeutic strategies for cancer immunotherapy is necessary. We found that 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl)imidazole (BZML), a microtubule-targeting agent, exhibited potent anticancer activity by inducing mitotic catastrophe in A549/Taxol and L929 cells. Nuclear membrane disruption and nuclease reduction provided favorable conditions for cGAS-STING pathway activation in cells with mitotic catastrophe. Similar results were obtained in paclitaxel-, docetaxel- and doxorubicin-induced mitotic catastrophe in various cancer cells. Notably, the surface localization of CALR and MHC-I and the release of HMGB1 were also significantly increased in cells with mitotic catastrophe, but not in apoptotic cells, suggesting that mitotic catastrophe is an immunogenic cell death. Furthermore, activated CD8+T cells enhanced the anticancer effects originating from mitotic catastrophe induced by BZML. Inhibiting the cGAS-STING pathway failed to affect BZML-induced mitotic catastrophe but could inhibit mitotic catastrophe-mediated anticancer immune effects. Interestingly, the expression of p-TBK1 first increased and then declined; however, autophagy inhibition reversed the decrease in p-TBK1 expression and enhanced mitotic catastrophe-mediated anticancer immune effects. Collectively, the inhibition of autophagy can potentiate mitotic catastrophe-mediated anticancer immune effects by regulating the cGAS-STING pathway, which explains why the anticancer immune effects induced by chemotherapeutics have not fully exerted their therapeutic efficacy in some patients and opens a new area of research in cancer immunotherapy.


Assuntos
Nucleotidiltransferases , Paclitaxel , Humanos , Paclitaxel/farmacologia , Nucleotidiltransferases/metabolismo , Morte Celular , Imunidade , Autofagia
17.
J Control Release ; 368: 42-51, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365180

RESUMO

Protein corona has long been a source of concern, as it might impair the targeting efficacy of targeted drug delivery systems. However, engineered up-regulating the adsorption of certain functional serum proteins could provide nanoparticles with specific targeting drug delivery capacity. Herein, apolipoprotein A-I absorption increased nanoparticles (SPC-PLGA NPs), composed with the Food and Drug Administration approved intravenously injectable soybean phosphatidylcholine (SPC) and poly (DL-lactide-co-glycolide) (PLGA), were fabricated for enhanced glioma targeting. Due to the high affinity of SPC and apolipoprotein A-I, the percentage of apolipoprotein A-I in the protein corona of SPC-PLGA NPs was 2.19-fold higher than that of nanoparticles without SPC, which made SPC-PLGA NPs have superior glioma targeting ability through binding to scavenger receptor class BI on blood-brain barrier and glioma cells both in vitro and in vivo. SPC-PLGA NPs loaded with paclitaxel could effectively reduce glioma invasion and prolong the survival time of glioma-bearing mice. In conclusion, we provided a good example of the direction of achieving targeting drug delivery based on protein corona regulation.


Assuntos
Glioma , Nanopartículas , Coroa de Proteína , Camundongos , Animais , Apolipoproteína A-I , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Paclitaxel/uso terapêutico , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico
18.
Small ; 20(6): e2306191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775935

RESUMO

In nature, many organisms respond chemotactically to external chemical stimuli in order to extract nutrients or avoid danger. Inspired by this natural chemotaxis, micro/nanomotors with chemotactic properties have been developed and applied to study a variety of disease models. This chemotactic strategy has shown promising results and has attracted the attention of an increasing number of researchers. This paper mainly reviews the construction methods of different types of chemotactic micro/nanomotors, the mechanism of chemotaxis, and the potential applications in biomedicine. First, based on the classification of materials, the construction methods and therapeutic effects of chemotactic micro/nanomotors based on natural cells and synthetic materials in cellular and animal experiments will be elaborated in detail. Second, the mechanism of chemotaxis of micro/nanomotors is elaborated in detail: chemical reaction induced chemotaxis and physical process driven chemotaxis. In particular, the main differences and significant advantages between chemotactic micro/nanomotors and magnetic, electrical and optical micro/nanomotors are described. The applications of chemotactic micro/nanomotors in the biomedical fields in recent years are then summarized, focusing on the mechanism of action and therapeutic effects in cancer and cardiovascular disease. Finally, the authors are looking forward to the future development of chemotactic micro/nanomotors in the biomedical fields.


Assuntos
Nanoestruturas , Nanotecnologia , Animais , Nanotecnologia/métodos , Nanoestruturas/química , Quimiotaxia
19.
Acta Pharmacol Sin ; 45(4): 728-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086898

RESUMO

Stimulation of adult cardiomyocyte proliferation is a promising strategy for treating myocardial infarction (MI). Earlier studies have shown increased CCL2 levels in plasma and cardiac tissue both in MI patients and mouse models. In present study we investigated the role of CCL2 in cardiac regeneration and the underlying mechanisms. MI was induced in adult mice by permanent ligation of the left anterior descending artery, we showed that the serum and cardiac CCL2 levels were significantly increased in MI mice. Intramyocardial injection of recombinant CCL2 (rCCL2, 1 µg) immediately after the surgery significantly promoted cardiomyocyte proliferation, improved survival rate and cardiac function, and diminished scar sizes in post-MI mice. Alongside these beneficial effects, we observed an increased angiogenesis and decreased cardiomyocyte apoptosis in post-MI mice. Conversely, treatment with a selective CCL2 synthesis inhibitor Bindarit (30 µM) suppressed both CCL2 expression and cardiomyocyte proliferation in P1 neonatal rat ventricle myocytes (NRVMs). We demonstrated in NRVMs that the CCL2 stimulated cardiomyocyte proliferation through STAT3 signaling: treatment with rCCL2 (100 ng/mL) significantly increased the phosphorylation levels of STAT3, whereas a STAT3 phosphorylation inhibitor Stattic (30 µM) suppressed rCCL2-induced cardiomyocyte proliferation. In conclusion, this study suggests that CCL2 promotes cardiac regeneration via activation of STAT3 signaling, underscoring its potential as a therapeutic agent for managing MI and associated heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Camundongos , Animais , Ratos , Quimiocina CCL2/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos , Insuficiência Cardíaca/metabolismo , Regeneração , Camundongos Endogâmicos C57BL , Apoptose , Fator de Transcrição STAT3/metabolismo
20.
J Agric Food Chem ; 71(50): 20251-20259, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060299

RESUMO

The browning formation and taste enhancement of peptides derived from soybean, peanut, and corn were studied in the light-colored Maillard reaction compared with the deep-colored reaction. The fluorescent compounds, as the browning precursors, were accumulated during the early Maillard reaction of peptides and subsequently degraded into dark substances, which resulted in a higher browning degree of deep-colored Maillard peptides (MPs), especially for the MPs derived from corn peptide. However, the addition of l-cysteine in light-colored Maillard reaction reduced the formation of deoxyosones and short-chain reactive α-dicarbonyls, thereby weakening the generation of fluorescent compounds and inhibited the browning of MPs. Synchronously, the peptides were thermally degraded into small peptides and amino acids, which were consumed less during light-colored thermal reaction due to its shorter reaction time at high temperature compared with deep-colored ones, thus contributing to a stronger saltiness perception of light-colored MPs than deep-colored MPs. Besides, the Maillard reaction products derived from soybean and peanut peptides possessed an obvious "kokumi" taste, making them suitable for enhancing the soup flavors.


Assuntos
Reação de Maillard , Peptídeos , Peptídeos/química , Aminoácidos/química , Cisteína/química , Glycine max , Percepção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA