Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 367: 697-707, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331001

RESUMO

Precise targeting is a major prerequisite for effective cancer therapy because it ensures a sufficient therapeutic dosage in tumors while minimizing off-target side effects. Herein, we report a live-macrophage-based therapeutic system for high-efficiency tumor therapy. As a proof of concept, anti-human epidermal growth factor receptor-2 (HER2) affibodies were genetically engineered onto the extracellular membrane of macrophages (AE-Mφ), which further internalized doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) nanoparticles (NPs) to produce a macrophage-based therapeutic system armed with anti-HER2 affibodies. NPs(DOX)@AE-Mφ were able to target HER2+ cancer cells and specifically elicit affibody-mediated cell therapy. Most importantly, the superior HER2 + -targeting capability of NPs(DOX)@AE-Mφ greatly guaranteed high accumulation at the tumor site for improved chemotherapy, which acted synergistically with cell therapy to significantly enhance anti-tumor efficacy. This study suggests that NPs(DOX)@AE-Mφ could be utilized as an innovative 'living targeted drug' platform for combining both macrophage-mediated cell therapy and targeted chemotherapy for the individualized treatment of solid tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Doxorrubicina/uso terapêutico , Macrófagos , Linhagem Celular Tumoral
2.
Adv Sci (Weinh) ; 11(10): e2305600, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38152963

RESUMO

Despite the potential of protein therapeutics, the cytosolic delivery of proteins with high efficiency and bioactivity remains a significant challenge owing to exocytosis and lysosomal degradation after endocytosis. Therefore, it is important to develop a safe and efficient strategy to bypass endocytosis. Inspired by the extraordinary capability of filamentous-actin (F-actin) to promote cell membrane fusion, a cyanine dye assembly-containing nanoplatform mimicking the structure of natural F-actin is developed. The nanoplatform exhibits fast membrane fusion to cell membrane mimics and thus enters live cells through membrane fusion and bypasses endocytosis. Moreover, it is found to efficiently deliver protein cargos into live cells and quickly release them into the cytosol, leading to high protein cargo transfection efficiency and bioactivity. The nanoplatform also results in the superior inhibition of tumor cells when loaded with anti-tumor proteins. These results demonstrate that this fusogenic nanoplatform can be valuable for cytosolic protein delivery and tumor treatment.


Assuntos
Actinas , Neoplasias , Humanos , Actinas/metabolismo , Citosol/metabolismo , Membrana Celular/metabolismo , Neoplasias/metabolismo
3.
Mol Pharm ; 20(5): 2362-2375, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989419

RESUMO

Efficient drug delivery to solid tumors remains a challenge. HER2-positive (HER2+) tumors are an aggressive cancer subtype with a resistance to therapy, high risk of relapse, and poor prognosis. Although nanomedicine technology shows obvious advantages in tumor treatment, its potential clinical translation is still impeded by the unsatisfactory delivery and therapeutic efficacy. In this study, a gene reprogramming macrophage membrane-encapsulated drug-loading nanoplatform was developed for HER2+ cancer therapy based on the co-assembly of poly (lactic-co-glycolic acid) (PLGA) nanoparticles and engineered modified macrophage membranes. In this nanoplatform, near-infrared (NIR) fluorescent dye ICG or chemotherapeutic drug doxorubicin (DOX) was loaded into the PLGA cores, and an anti-HER2 affibody was stably expressed on the membrane of macrophages. In comparison to the nanoparticles with conventional macrophage membrane coating, the ICG/DOX@AMNP nanoparticles armed with anti-HER2 affibody showed excellent HER2-targeting ability both in vitro and in vivo. Small animal imaging studies confirmed the improved pharmacokinetics of drug delivery and specific distribution of the ICG/DOX@AMNPs in HER2+ tumors. Mechanistically, compared with DOX@NPs or DOX@MNPs nanoparticles, DOX@AMNPs exhibited synergistic inhibition of HER2+ cancer cells or mice tumor growth by inducing apoptosis and blocking the PI3K/AKT signaling pathway. Altogether, this study proposes a promising biomimetic nanoplatform for the efficient targeted delivery of chemotherapeutic agents to HER2+ tumors, demonstrating its great potential for solid tumor therapy.


Assuntos
Biônica , Nanopartículas , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Macrófagos , Liberação Controlada de Fármacos
4.
Adv Healthc Mater ; 12(18): e2203356, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929306

RESUMO

The majority of cancer patients die of metastasis rather than primary tumors, and most patients may have already completed the cryptic metastatic process at the time of diagnosis, making them intractable for therapeutic intervention. The urokinase-type plasminogen activator (uPA) system is proved to drive cancer metastasis. However, current blocking agents such as uPA inhibitors or antibodies are far from satisfactory due to poor pharmacokinetics and especially have to face multiplex mechanisms of metastasis. Herein, an effective strategy is proposed to develop a uPA-scavenger macrophage (uPAR-MΦ), followed by loading chemotherapeutics with nanoparticles (GEM@PLGA) to confront cancer metastasis. Interestingly, significant elimination of uPA by uPAR-MΦ is demonstrated by transwell analysis on tumor cells in vitro and enzyme-linked immunosorbent assay detection in peripheral blood of mice with metastatic tumors, contributing to significant inhibition of migration of tumor cells and occurrence of metastatic tumor lesions in mice. Moreover, uPAR-MΦ loaded with GEM@PLGA shows a robust antimetastasis effect and significantly prolonged survival in 4T1-tumor-bearing mice models. This work provides a novel living drug platform for realizing a potent treatment strategy to patients suffering from cancer metastasis, which can be further expanded to handle other tumor metastasis markers mediating cancer metastasis.


Assuntos
Caproatos , Macrófagos , Metástase Neoplásica , Ativador de Plasminogênio Tipo Uroquinase , Metástase Neoplásica/tratamento farmacológico , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Caproatos/farmacologia , Animais , Camundongos , Nanopartículas , Neoplasias Experimentais , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Feminino
5.
Nano Lett ; 22(20): 8250-8257, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36218311

RESUMO

Photodynamic therapy (PDT) holds great promise in tumor therapy due to high safety, efficacy, and specificity. However, the risk of increased metastasis in hypoxic tumors after oxygen-dependent PDT remains underestimated. Here, we propose a post-PDT oxygen supply (POS) strategy to reduce the risk of metastasis. Herein, biocompatible and tumor-targeting Ce6@BSA and PFC@BSA nanoparticles were constructed for PDT and POS in a 4T1-orthotropic breast cancer model. PDT with Ce6@BSA nanoparticles increased tumor metastasis via the HIF-1α signaling pathway, whereas POS significantly reduced the PDT-triggered metastasis by blocking this pathway. Furthermore, POS, with clinical protocols and an FDA-approved photosensitizer (hypericin), and oxygen inhalation reduced PDT-induced metastasis. Our study findings indicate that PDT may increase the risk of tumor metastasis and that POS may solve this problem. POS can reduce the metastasis resulting not only from PDT but also from other oxygen-dependent treatments such as radiotherapy and sonodynamic therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Oxigênio
6.
Colloids Surf B Biointerfaces ; 217: 112686, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810610

RESUMO

Mild temperature photothermal therapy is gaining more and more attention due to high safety, high specificity and moderate efficacy. However, the therapeutical outcome of mild photothermal therapy is limited due to the overexpression of heat shock proteins (HSPs). Therefore, the precise management of HSP expression is the key to improvement of mild temperature photothermal therapy. However, the correlation between HSP expression and photothermal temperature in vivo is still unclear. To precisely control the photothermal temperature by managing the HSP expression, we quantified the HSP expression at different photothermal temperatures after irradiation on liposome-templated gold nanoparticles, which have high photostability, high photothermal conversion efficiency and low temperature fluctuation (smaller than 1 â„ƒ). We found that the expression of HSP70 was least at 47 â„ƒ, which was the optimal temperature for HSP management. We chose to co-administrate HSP70 inhibitor during 47 â„ƒ photothermal therapy, leading to greatly enhanced tumor inhibition. Our precise temperature-controlled photothermal therapy based on HSP expression offers a new strategy for clinical tumor photothermal therapy.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Ouro/uso terapêutico , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/uso terapêutico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/uso terapêutico , Humanos , Lipossomos , Neoplasias/patologia , Fototerapia , Terapia Fototérmica , Temperatura
7.
Nat Commun ; 13(1): 3513, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717407

RESUMO

Advancement of bioorthogonal chemistry in molecular optical imaging lies in expanding the repertoire of fluorophores that can undergo fluorescence signal changes upon bioorthogonal ligation. However, most available bioorthogonally activatable fluorophores only emit shallow tissue-penetrating visible light via an intramolecular charge transfer mechanism. Herein, we report a serendipitous "torsion-induced disaggregation (TIDA)" phenomenon in the design of near-infrared (NIR) tetrazine (Tz)-based cyanine probe. The TIDA of the cyanine is triggered upon Tz-transcyclooctene ligation, converting its heptamethine chain from S-trans to S-cis conformation. Thus, after bioorthogonal reaction, the tendency of the resulting cyanine towards aggregation is reduced, leading to TIDA-induced fluorescence enhancement response. This Tz-cyanine probe sensitively delineates the tumor in living mice as early as 5 min post intravenous injection. As such, this work discovers a design mechanism for the construction of bioorthogonally activatable NIR fluorophores and opens up opportunities to further exploit bioorthogonal chemistry in in vivo imaging.


Assuntos
Neoplasias , Imagem Óptica , Animais , Corantes Fluorescentes/química , Camundongos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos
8.
Theranostics ; 12(9): 4310-4329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673561

RESUMO

Pyroptosis is a lytic and inflammatory type of programmed cell death that is usually triggered by inflammasomes and executed by gasdermin proteins. The main characteristics of pyroptosis are cell swelling, membrane perforation, and the release of cell contents. In normal physiology, pyroptosis plays a critical role in host defense against pathogen infection. However, excessive pyroptosis may cause immoderate and continuous inflammatory responses that involves in the occurrence of inflammatory diseases. Attractively, as immunogenic cell death, pyroptosis can serve as a new strategy for cancer elimination by inducing pyroptotic cell death and activating intensely antitumor immunity. To make good use of this double-edged sword, the molecular mechanisms, and therapeutic implications of pyroptosis in related diseases need to be fully elucidated. In this review, we first systematically summarize the signaling pathways of pyroptosis and then present the available evidences indicating the role of pyroptosis in inflammatory diseases and cancer. Based on this, we focus on the recent progress in strategies that inhibit pyroptosis for treatment of inflammatory diseases, and those that induce pyroptosis for cancer therapy. Overall, this should shed light on future directions and provide novel ideas for using pyroptosis as a powerful tool to fight inflammatory diseases and cancer.


Assuntos
Neoplasias , Piroptose , Humanos , Inflamassomos/metabolismo , Piroptose/fisiologia , Transdução de Sinais
9.
ACS Biomater Sci Eng ; 8(5): 1892-1906, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404565

RESUMO

Organic near-infrared fluorescent dye mediated photothermal therapy (PTT) and photodynamic therapy (PDT) suffer from heat shock response, since, heat shock proteins (HSPs) are overexpressed and can repair the proteins damaged by PTT and PDT. Starvation therapy by glucose oxide (GOx) can inhibit the heat shock response by limiting the energy supply. However, the delivery of sufficient and active GOx remains a challenge. To solve this problem, we utilize liposomes as drug carriers and prepare GOx loaded liposome (GOx@Lipo) with a high drug loading content (12.0%) and high enzymatic activity. The successful delivery of GOx shows excellent inhibition of HSPs and enhances PTT and PDT. Additionally, we apply the same liposome formulation to load near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbo cyanine iodide (DiR) and prepare DiR contained liposomes (DiR@Lipo) for PTT and PDT. The liposomal formulation substantially enhances the PTT and PDT properties of DiR as well as the cellular uptake and tumor accumulation. Finally, the combination therapy shows excellent tumor inhibition on 4T1 tumor-bearing mice. Interestingly, we also find that the starvation therapy can efficiently inhibit tumor metastasis, which is probably due to the immunogenic effect. Our work presents a biocompatible and effective carrier for the combination of starvation therapy and phototherapy, emphasizing the importance of auxiliary starvation therapy against tumor metastasis and offering important guidance for clinical PTT and PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Glucose Oxidase/uso terapêutico , Lipossomos/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Terapia Fototérmica
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121031, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189489

RESUMO

Nitroreductase (NTR) detection in tumor is critical because NTR level is correlated with hypoxia degree and cancer prognosis. With the feature of high sensitivity and selectivity, fluorescence organic probes for NTR detection exhibited a promising future for tumor hypoxia detection. However, the discovery and design of such probes have been impeded due to the lack of the understanding of spatial match and mismatch of these probes with NTR. Here, we have developed two new nitrophenyl-functionalized trimethincyanine (Cy3) probes with para- or meta- positions of nitro-group in phenyl ring. Para-nitrophenyl substituted Cy3 (pNP-Cy3) exhibited a remarkable response to NTR (20-fold fluorescence enhancement) with good selectivity and sensitivity. Experimental and theoretical analysis verified that the substituent position of nitro group on phenyl ring of dyes altered the spatial arrangement of nitro-substituent group, thereby modulated the spatial match and mismatch between Cy3 dyes and binding domain of NTR, and consequently led to a different fluorescent turn-on response. In tumor-bearing mice model, hypoxia status of A549 xenografted tumor of mice was successfully delineated by using pNP-Cy3. These results may provide a clue for designing new cyanine-derived NTR probe to monitor NTR-overexpressed hypoxia cancer cells.


Assuntos
Neoplasias , Nitrorredutases , Hipóxia Tumoral , Animais , Corantes Fluorescentes/química , Camundongos , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Nitrorredutases/metabolismo
11.
Biomed Mater ; 16(4)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33975292

RESUMO

With the improvement of living standards, cancer has become a great challenge around the world during last decades, meanwhile, abundant nanomaterials have been developed as drug delivery system (DDS) or cancer theranostic agents (CTAs) with their outstanding properties. However, low multifunctional efficiency and time-consuming synthesis limit their further applications. Nowadays, green chemistry, in particular, the concept of atom economy, has defined new criteria for the simplicity and efficient production of biomaterials for nanomedicine, which not only owns the property of spatio-temporal precision imaging, but also possess the ability to treat cancer. Interestingly, metal-organic framework (MOF) is an excellent example to meet the requirements behind this concept and has great potential for next-generation nanomedicine. In this review, we summarize our recent researches and inspiring progresses in designing DDS and CTA built from MOF, aiming to show the simplicity, control, and versatility, and provide views on the development of MOF-based nanomedicine in the future.


Assuntos
Estruturas Metalorgânicas , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias , Nanomedicina Teranóstica , Antineoplásicos , Linhagem Celular Tumoral , Meios de Contraste , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
12.
Colloids Surf B Biointerfaces ; 199: 111537, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33385821

RESUMO

Tumor tissue imaging and drug release imaging are both crucial for tumor imaging and image-guided drug delivery. It is urgent to develop a multileveled tumor imaging platform to realize the multiple imaging applications. In this work, we synthesized an albumin-based fluorescence resonance energy transfer (FRET) probe Cy5/7@HSA NPs containing two near-infrared cyanine dyes (CyBI5 and CyBI7) with high FRET efficiency (97 %). Excellent brightness and efficient FRET inside Cy5/7@HSA NPs enabled high-sensitive cell imaging and tumor imaging. This unique nanoprobe imaged 4T1 tumor-bearing mice with high sensitivity (TBR = 5.2) at 24 h post-injection and the dyes penetrated the tumor interior around 4 h post-injection. The release of dyes from nanoprobes was also tracked. This result shows the strong potential of this albumin-based FRET nanoprobe as multileveled tumor imaging platform for in vivo tumor imaging, drug delivery and image-guided surgery.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Neoplasias , Albuminas , Animais , Corantes Fluorescentes , Camundongos , Neoplasias/diagnóstico por imagem , Imagem Óptica
13.
Adv Mater ; 32(40): e2002054, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32856350

RESUMO

Macrophages play an important role in cancer development and metastasis. Proinflammatory M1 macrophages can phagocytose tumor cells, while anti-inflammatory M2 macrophages such as tumor-associated macrophages (TAMs) promote tumor growth and invasion. Modulating the tumor immune microenvironment through engineering macrophages is efficacious in tumor therapy. M1 macrophages target cancerous cells and, therefore, can be used as drug carriers for tumor therapy. Herein, the strategies to engineer macrophages for cancer immunotherapy, such as inhibition of macrophage recruitment, depletion of TAMs, reprograming of TAMs, and blocking of the CD47-SIRPα pathway, are discussed. Further, the recent advances in drug delivery using M1 macrophages, macrophage-derived exosomes, and macrophage-membrane-coated nanoparticles are elaborated. Overall, there is still significant room for development in macrophage-mediated immune modulation and macrophage-mediated drug delivery, which will further enhance current tumor therapies against various malignant solid tumors, including drug-resistant tumors and metastatic tumors.


Assuntos
Engenharia Celular/métodos , Sistemas de Liberação de Medicamentos/métodos , Imunoterapia/métodos , Macrófagos/citologia , Neoplasias/terapia , Animais , Humanos , Neoplasias/imunologia
14.
Colloids Surf B Biointerfaces ; 188: 110789, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31955018

RESUMO

Liposomes are of great interest and importance in tumor imaging, since they can greatly improve the imaging sensitivity and specificity by increasing the accumulation of contrast agents. Still, most liposome-based probes have high background signals during blood circulation, which limits enhancement of S/B ratio and tumor imaging sensitivity. To enhance the S/B ratio of tumor imaging, we construct a fluorescence resonance energy transfer (FRET) and aggregation induced emission (AIE) based liposomal fluorescence probe TPE/BHQ-lipo with excellent FRET effect (99 %) and great fluorescence enhancement upon liposome rupture (120-fold) as well as efficient fluorescence recovery in tumor cell imaging. Finally, we used the TPE/BHQ-lipo to image 4T1 tumor upon intravenous injection of liposomes and the group showed enhanced signal to background ratio of 4.1, compared to 1.8 from control AIE-based liposomal group (TPE-lipo). Our work offers an excellent FRET and AIE-based liposomal probe for high-sensitive tumor imaging.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Imagem Óptica , Animais , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/síntese química , Lipossomos/síntese química , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
15.
Nanoscale ; 11(13): 5822-5838, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30888379

RESUMO

Molecular imaging is very important in disease diagnosis and prognosis. Liposomes are excellent carriers for different types of molecular imaging probes. In this work, we summarize current developments in liposome-based probes used for molecular imaging and their applications in image-guided drug delivery and tumour surgery, including computed tomography (CT), ultrasound imaging (USI), magnetic resonance imaging (MRI), positron emission tomography (PET), fluorescence imaging (FLI) and photoacoustic imaging (PAI). We also summarized liposome-based multimodal imaging probes and new targeting strategies for liposomes. This work will offer guidance for the design of liposome-based imaging probes for future clinical applications.


Assuntos
Lipossomos/química , Animais , Meios de Contraste/química , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos
16.
ACS Appl Mater Interfaces ; 10(30): 25146-25153, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29984571

RESUMO

The design and exploration of fluorescent probes with high-sensitivity and low-background are essential for noninvasive optical molecular imaging. The in vivo and in situ activated aggregation-induced emission (AIE) probes were found to be ideal for achieving higher signal-to-background ratios for tumor detections. We herein developed novel tetraphenylethene-encapsulated liposomes (TPE-LPs) constructed by loading TPE-trimethincyanine into liposomes for the first time, and the probes were applied to tumor bioimaging in vivo. TPE-functionalized trimethincyanines were synthesized with a new and efficient one-pot reaction. In TPE-LPs, TPE-functionalized bicarboxylic acids benzoindole trimethinecyanine (TPE-BICOOH) fluorophores were found to be well dispersed in lipid bilayers (with non-restricted rotation) during the blood circulation, and then aggregated (with restriction of intramolecular rotation) upon liposome rupture in the tumor tissue, achieving a low-background and high-target signal for tumor imaging. The in situ activated AIE probes not only had great accumulation at the tumor site after intravenous injection in 4T1 tumor-bearing mice but also demonstrated excellent signal-to-background ratios, as well as low cytotoxicity and excellent biocompatibility. The proposed strategy is believed to be a simple and powerful tool for the sensitive detection of tumors.


Assuntos
Neoplasias , Animais , Corantes Fluorescentes , Lipossomos , Camundongos , Imagem Óptica
17.
Colloids Surf B Biointerfaces ; 170: 514-520, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29960952

RESUMO

Multidrug resistance of tumour cells is one of the most important hurdles in tumour chemotherapy. To overcome the multidrug resistance, we constructed a pH-sensitive liposome formulation (pHSL) by loading tariquidar (TQR) and DOX simultaneously in this work. The formulation showed high stability at pH 7.4 and excellent sensitivity at acidic pH, which facilitated the delivery of TQR and DOX into cells. Cellular experiments demonstrated that the pHSL/TQR/DOX 0.05 could almost restore the drug sensitivity of OVCAR8/ADR cells. Therefore, the pH sensitive liposome formulation pHSL/TQR/DOX 0.05 was very promising in treating resistant tumours.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lipossomos/química , Quinolinas/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/síntese química , Tamanho da Partícula , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais Cultivadas
18.
PeerJ ; 6: e4254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29340250

RESUMO

The etiology of cancer includes aberrant cellular homeostasis where a compromised RNA regulatory network is a prominent contributing factor. In particular, noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) were recently shown to play important roles in the initiation, progression, and metastasis of human cancers. Nonetheless, a mechanistic understanding of noncoding RNA functions in lung squamous cell carcinoma (LUSC) is lacking. To fill this critical gap in knowledge, we obtained mRNA, miRNA, and lncRNA expression data on patients with LUSC from the updated Cancer Genome Atlas (TCGA) database (2016). We successfully identified 3,366 mRNAs, 79 miRNAs, and 151 lncRNAs as key contributing factors of a high risk of LUSC. Furthermore, we hypothesized that the lncRNA-miRNA-mRNA regulatory axis positively correlates with LUSC and constructed a competitive endogenous RNA (ceRNA) network of LUSC by targeting interrelations with significantly aberrant expression data between miRNA and mRNA or lncRNA. Six ceRNAs (PLAU, miR-31-5p, miR-455-3p, FAM83A-AS1, MIR31HG, and MIR99AHG) significantly correlated with survival (P < 0.05). Finally, real-time quantitative PCR analysis showed that PLAU is significantly upregulated in SK-MES-1 cells compared with 16-BBE-T cells. Taken together, our findings represent new knowledge for a better understanding the ceRNA network in LUSC biology and pave the way to improved diagnosis and prognosis of LUSC.

19.
Colloids Surf B Biointerfaces ; 159: 427-436, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28826111

RESUMO

Multidrug resistance (MDR) is one of the important factors that impede effective chemotherapy against cancer. Codelivery of MDR1 siRNA (silencing ABCB1 gene) and anticancer drug can greatly inhibit tumor proliferation. Here in this work, we synthesized poly(diallyldimethylammonium chloride) (PDADMAC) coated liposome formula as siMDR1 carrier (AL-PDAD-RNA) and applied it to reverse doxorubicin resistance of OVCAR8/ADR cells. The AL-PDAD-RNA can load siRNA effectively and release siRNA under physiological conditions, leading to improved tumor inhibition than free DOX without siRNA treatment. Meanwhile, the gene silencing effect of AL-PDAD-RNA was shown to be comparable to that of commercial transfection agent lipofectamine, but with less toxicity. The main novelty of this work is to offer a new type of siRNA carrier (PDADMAC coated liposome, AL-PDAD), which is simple-structured, highly-effective and non-toxic. Therefore, we anticipate that PDADMAC-coated liposomes would be very promising in the application of other siRNA delivery or even plasmid delivery.


Assuntos
Lipossomos/química , Poliaminas/química , RNA Interferente Pequeno/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Células MCF-7 , Polieletrólitos , Polietilenos/química , Compostos de Amônio Quaternário/química , RNA Interferente Pequeno/genética
20.
Chem Soc Rev ; 46(10): 2824-2843, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28345687

RESUMO

RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.


Assuntos
Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Medições Luminescentes/métodos , Imagem Molecular/métodos , Imagem Óptica/métodos , RNA/análise , Corantes Fluorescentes/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA