Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 63(8): 25, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35895036

RESUMO

Purpose: Retinal microglia promote angiogenesis and vasculopathy in oxygen-induced retinopathy (OIR); however, its specific molecular mechanism in the formation of retinal angiogenesis remains unclear. The lectin galactoside-binding soluble 3 binding protein (LGALS3BP), a member of the scavenger receptor cysteine-rich (SRCR) domain protein family, is involved in tumor neovascularization, and we therefore hypothesized that LGALS3BP plays an active role in microglia-induced angiogenesis. Methods: The expression of LGALS3BP in microglia was detected by immunofluorescence, RT-qPCR, and western blotting. Functional assays of human umbilical vein endothelial cells (HUVECs) such as migration, proliferation, and tube formation were measured by Transwell, EdU, and Matrigel assays. Angiogenesis-related factors and PI3K/AKT levels were detected by western blotting. The relationship between LGALS3BP and PI3K or HIF-1α was investigated by immunoprecipitation. Results: Our results showed that the expression of LGALS3BP was significantly increased in microglia surrounding neovascularization of the OIR mice and was also upregulated in human microglial clone 3 (HMC3) cells after hypoxia. Moreover, HUVECs co-cultured with hypoxic HMC3 cells showed increased migration, proliferation, and tube formation, as well as levels of angiogenesis-related factor. However, the proangiogenic ability and angiogenesis-related factor expression of HMC3 cells was suppressed after silencing LGALS3BP. LGALS3BP induces the upregulation of angiogenesis-related factors through the PI3K/AKT pathway and then promotes angiogenesis in microglia. Conclusions: Collectively, our findings suggest that LGALS3BP in microglia plays an important role in angiogenesis, suggesting a potential therapeutic target of LGALS3BP for angiogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lectinas , Camundongos , Microglia/metabolismo , Neovascularização Patológica/metabolismo , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885710

RESUMO

Structural and biochemical studies elucidate that PAN may contribute to the host protein shutdown observed during influenza A infection. Thus, inhibition of the endonuclease activity of viral RdRP is an attractive approach for novel antiviral therapy. In order to envisage structurally diverse novel compounds with better efficacy as PAN endonuclease inhibitors, a ligand-based-pharmacophore model was developed using 3D-QSAR pharmacophore generation (HypoGen algorithm) methodology in Discovery Studio. As the training set, 25 compounds were taken to generate a significant pharmacophore model. The selected pharmacophore Hypo1 was further validated by 12 compounds in the test set and was used as a query model for further screening of 1916 compounds containing 71 HIV-1 integrase inhibitors, 37 antibacterial inhibitors, 131 antiviral inhibitors and other 1677 approved drugs by the FDA. Then, six compounds (Hit01-Hit06) with estimated activity values less than 10 µM were subjected to ADMET study and toxicity assessment. Only one potential inhibitory 'hit' molecule (Hit01, raltegravir's derivative) was further scrutinized by molecular docking analysis on the active site of PAN endonuclease (PDB ID: 6E6W). Hit01 was utilized for designing novel potential PAN endonuclease inhibitors through lead optimization, and then compounds were screened by pharmacophore Hypo1 and docking studies. Six raltegravir's derivatives with significant estimated activity values and docking scores were obtained. Further, these results certainly do not confirm or indicate the seven compounds (Hit01, Hit07, Hit08, Hit09, Hit10, Hit11 and Hit12) have antiviral activity, and extensive wet-laboratory experimentation is needed to transmute these compounds into clinical drugs.


Assuntos
Adenosina Trifosfatases/química , Endonucleases/química , Inibidores Enzimáticos/química , Influenza Humana/enzimologia , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/ultraestrutura , Domínio Catalítico/efeitos dos fármacos , Desenho de Fármacos/tendências , Endonucleases/antagonistas & inibidores , Endonucleases/ultraestrutura , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA