Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
IEEE Trans Radiat Plasma Med Sci ; 8(1): 76-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39220226

RESUMO

Radiation-induced acoustics (RIA) shows promise in advancing radiological imaging and radiotherapy dosimetry methods. However, RIA signals often require extensive averaging to achieve reasonable signal-to-noise ratios, which increases patient radiation exposure and limits real-time applications. Therefore, this paper proposes a discrete wavelet transform (DWT) based filtering approach to denoise the RIA signals and avoid extensive averaging. The algorithm was benchmarked against low-pass filters and tested on various types of RIA sources, including low-energy X-rays, high-energy X-rays, and protons. The proposed method significantly reduced the required averages (1000 times less averaging for low-energy X-ray RIA, 32 times less averaging for high-energy X-ray RIA, and 4 times less averaging for proton RIA) and demonstrated robustness in filtering signals from different sources of radiation. The coif5 wavelet in conjunction with the sqtwolog threshold selection algorithm yielded the best results. The proposed DWT filtering method enables high-quality, automated, and robust filtering of RIA signals, with a performance similar to low-pass filtering, aiding in the clinical translation of radiation-based acoustic imaging for radiology and radiation oncology.

2.
Med Phys ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980065

RESUMO

BACKGROUND: Protoacoustic (PA) imaging has the potential to provide real-time 3D dose verification of proton therapy. However, PA images are susceptible to severe distortion due to limited angle acquisition. Our previous studies showed the potential of using deep learning to enhance PA images. As the model was trained using a limited number of patients' data, its efficacy was limited when applied to individual patients. PURPOSE: In this study, we developed a patient-specific deep learning method for protoacoustic imaging to improve the reconstruction quality of protoacoustic imaging and the accuracy of dose verification for individual patients. METHODS: Our method consists of two stages: in the first stage, a group model is trained from a diverse training set containing all patients, where a novel deep learning network is employed to directly reconstruct the initial pressure maps from the radiofrequency (RF) signals; in the second stage, we apply transfer learning on the pre-trained group model using patient-specific dataset derived from a novel data augmentation method to tune it into a patient-specific model. Raw PA signals were simulated based on computed tomography (CT) images and the pressure map derived from the planned dose. The reconstructed PA images were evaluated against the ground truth by using the root mean squared errors (RMSE), structural similarity index measure (SSIM) and gamma index on 10 specific prostate cancer patients. The significance level was evaluated by t-test with the p-value threshold of 0.05 compared with the results from the group model. RESULTS: The patient-specific model achieved an average RMSE of 0.014 ( p < 0.05 ${{{p}}}<{0.05}$ ), and an average SSIM of 0.981 ( p < 0.05 ${{{p}}}<{0.05}$ ), out-performing the group model. Qualitative results also demonstrated that our patient-specific approach acquired better imaging quality with more details reconstructed when comparing with the group model. Dose verification achieved an average RMSE of 0.011 ( p < 0.05 ${{{p}}}<{0.05}$ ), and an average SSIM of 0.995 ( p < 0.05 ${{{p}}}<{0.05}$ ). Gamma index evaluation demonstrated a high agreement (97.4% [ p < 0.05 ${{{p}}}<{0.05}$ ] and 97.9% [ p < 0.05 ${{{p}}}<{0.05}$ ] for 1%/3  and 1%/5 mm) between the predicted and the ground truth dose maps. Our approach approximately took 6 s to reconstruct PA images for each patient, demonstrating its feasibility for online 3D dose verification for prostate proton therapy. CONCLUSIONS: Our method demonstrated the feasibility of achieving 3D high-precision PA-based dose verification using patient-specific deep-learning approaches, which can potentially be used to guide the treatment to mitigate the impact of range uncertainty and improve the precision. Further studies are needed to validate the clinical impact of the technique.

3.
Med Phys ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073707

RESUMO

BACKGROUND: Fast low angle shot hyperfractionation (FLASH) radiotherapy (RT) holds promise for improving treatment outcomes and reducing side effects but poses challenges in radiation delivery accuracy due to its ultra-high dose rates. This necessitates the development of novel imaging and verification technologies tailored to these conditions. PURPOSE: Our study explores the effectiveness of proton-induced acoustic imaging (PAI) in tracking the Bragg peak in three dimensions and in real time during FLASH proton irradiations, offering a method for volumetric beam imaging at both conventional and FLASH dose rates. METHODS: We developed a three-dimensional (3D) PAI technique using a 256-element ultrasound detector array for FLASH dose rate proton beams. In the study, we tested protoacoustic signal with a beamline of a FLASH-capable synchrocyclotron, setting the distal 90% of the Bragg peak around 35 mm away from the ultrasound array. This configuration allowed us to assess various total proton radiation doses, maintaining a consistent beam output of 21 pC/pulse. We also explored a spectrum of dose rates, from 15 Gy/s up to a FLASH rate of 48 Gy/s, by administering a set number of pulses. Furthermore, we implemented a three-dot scanning beam approach to observe the distinct movements of individual Bragg peaks using PAI. All these procedures utilized a proton beam energy of 180 MeV to achieve the maximum possible dose rate. RESULTS: Our findings indicate a strong linear relationship between protoacoustic signal amplitudes and delivered doses (R2 = 0.9997), with a consistent fit across different dose rates. The technique successfully provided 3D renderings of Bragg peaks at FLASH rates, validated through absolute Gamma index values. CONCLUSIONS: The protoacoustic system demonstrates effectiveness in 3D visualization and tracking of the Bragg peak during FLASH proton therapy, representing a notable advancement in proton therapy quality assurance. This method promises enhancements in protoacoustic image guidance and real-time dosimetry, paving the way for more accurate and effective treatments in ultra-high dose rate therapy environments.

4.
Phys Med Biol ; 69(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39019059

RESUMO

Objective.Radiation-induced acoustic (RA) computed tomographic (RACT) imaging is being thoroughly explored for radiation dosimetry. It is essential to understand how key machine parameters like beam pulse, size, and energy deposition affect image quality in RACT. We investigate the intricate interplay of these parameters and how these factors influence dose map resolution in RACT.Approach.We first conduct an analytical assessment of time-domain RA signals and their corresponding frequency spectra for certain testcases, and computationally validate these analyses. Subsequently, we simulated a series of x-ray-based RACT (XACT) experiments and compared the simulations with experimental measurements.In-silicoreconstruction studies have also been conducted to demonstrate the resolution limits imposed by the temporal pulse profiles on RACT. XACT experiments were performed using clinical machines and the reconstructions were analyzed for resolution capabilities.Main results.Our paper establishes the theory for predicting the time- and frequency-domain behavior of RA signals. We illustrate that the frequency content of RA signal is not solely dependent on the spatial energy deposition characteristics but also on the temporal features of radiation. The same spatial energy deposition through a Gaussian pulse and a rectangular pulse of equal pulsewidths results in different frequency spectra of the RA signals. RA signals corresponding to the rectangular pulse exhibit more high-frequency content than their Gaussian pulse counterparts and hence provide better resolution in the reconstructions. XACT experiments with ∼3.2 us and ∼4 us rectangular radiation pulses were performed, and the reconstruction results were found to correlate well with thein-silicoresults.Significance.Here, we discuss the inherent resolution limits for RACT-based radiation dosimetric systems. While our study is relevant to the broader community engaged in research on photoacoustics, x-ray-acoustics, and proto/ionoacoustics, it holds particular significance for medical physics researchers aiming to set up RACT for dosimetry and radiography using clinical radiation machines.


Assuntos
Acústica , Radiometria , Radiometria/métodos , Humanos , Tomografia Computadorizada por Raios X
5.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471184

RESUMO

Objective. Protoacoustic imaging showed great promise in providing real-time 3D dose verification of proton therapy. However, the limited acquisition angle in protoacoustic imaging induces severe artifacts, which impairs its accuracy for dose verification. In this study, we developed a hybrid-supervised deep learning method for protoacoustic imaging to address the limited view issue.Approach. We proposed a Recon-Enhance two-stage deep learning method. In the Recon-stage, a transformer-based network was developed to reconstruct initial pressure maps from raw acoustic signals. The network is trained in a hybrid-supervised approach, where it is first trained using supervision by the iteratively reconstructed pressure map and then fine-tuned using transfer learning and self-supervision based on the data fidelity constraint. In the enhance-stage, a 3D U-net is applied to further enhance the image quality with supervision from the ground truth pressure map. The final protoacoustic images are then converted to dose for proton verification.Main results. The results evaluated on a dataset of 126 prostate cancer patients achieved an average root mean squared errors (RMSE) of 0.0292, and an average structural similarity index measure (SSIM) of 0.9618, out-performing related start-of-the-art methods. Qualitative results also demonstrated that our approach addressed the limit-view issue with more details reconstructed. Dose verification achieved an average RMSE of 0.018, and an average SSIM of 0.9891. Gamma index evaluation demonstrated a high agreement (94.7% and 95.7% for 1%/3 mm and 1%/5 mm) between the predicted and the ground truth dose maps. Notably, the processing time was reduced to 6 s, demonstrating its feasibility for online 3D dose verification for prostate proton therapy.Significance. Our study achieved start-of-the-art performance in the challenging task of direct reconstruction from radiofrequency signals, demonstrating the great promise of PA imaging as a highly efficient and accurate tool forinvivo3D proton dose verification to minimize the range uncertainties of proton therapy to improve its precision and outcomes.


Assuntos
Aprendizado Profundo , Terapia com Prótons , Masculino , Humanos , Prótons , Imageamento Tridimensional , Próstata , Processamento de Imagem Assistida por Computador/métodos
6.
Med Phys ; 51(7): 5070-5080, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38116792

RESUMO

BACKGROUND: Applying ultra-high dose rates to radiation therapy, otherwise known as FLASH, has been shown to be just as effective while sparing more normal tissue compared to conventional radiation therapy. However, there is a need for a dosimeter that is able to detect such high instantaneous dose, particularly in vivo. To fulfill this need, protoacoustics is introduced, which is an in vivo range verification method with submillimeter accuracy. PURPOSE: The purpose of this work is to demonstrate the feasibility of using protoacoustics as a method of in vivo real-time monitoring during FLASH proton therapy and investigating the resulting protoacoustic signal when dose per pulse and pulsewidth are varied through multiple simulation studies. METHODS: The dose distribution of a proton pencil beam was calculated through a Monte Carlo toolbox, TOPAS. Next, the k-Wave toolbox in MATLAB was used for performing protoacoustic simulations, where the initial proton dose deposition was inputted to model acoustic propagations, which were also used for reconstructions. Simulations involving the manipulation of the dose per pulse and pulsewidth were performed, and the temporal and spatial resolution for protoacoustic reconstructions were investigated as well. A 3D reconstruction was performed with a multiple beam spot profile to investigate the spatial resolution as well as determine the feasibility of 3D imaging with protoacoustics. RESULTS: Our results showed consistent linearity in the increasing dose-per-pulse, even up to rates considered for FLASH. The simulations and reconstructions were performed for a range of pulsewidths from 0.1 to 10 µs. The results show the characteristics of the proton beam after convolving the protoacoustic signal with the varying pulsewidths. 3D reconstruction was successfully performed with each beam being distinguishable using an 8 cm × 8 cm planar array. These simulation results show that measurements using protoacoustics has the potential for in vivo dosimetry in FLASH therapy during patient treatments in real time. CONCLUSION: Through this simulation study, the use of protoacoustics in FLASH therapy was verified and explored through observations of varying parameters, such as the dose per pulse and pulsewidth. 2D and 3D reconstructions were also completed. This study shows the significance of using protoacoustics and provides necessary information, which can further be explored in clinical settings.


Assuntos
Método de Monte Carlo , Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Terapia com Prótons/métodos , Radiometria/métodos , Acústica , Fatores de Tempo , Simulação por Computador , Estudos de Viabilidade , Humanos
7.
Phys Med Biol ; 68(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37820684

RESUMO

Radiation-induced acoustic (RA) imaging is a promising technique for visualizing the invisible radiation energy deposition in tissues, enabling new imaging modalities and real-time therapy monitoring. However, RA imaging signal often suffers from poor signal-to-noise ratios (SNRs), thus requiring measuring hundreds or even thousands of frames for averaging to achieve satisfactory quality. This repetitive measurement increases ionizing radiation dose and degrades the temporal resolution of RA imaging, limiting its clinical utility. In this study, we developed a general deep inception convolutional neural network (GDI-CNN) to denoise RA signals to substantially reduce the number of frames needed for averaging. The network employs convolutions with multiple dilations in each inception block, allowing it to encode and decode signal features with varying temporal characteristics. This design generalizes GDI-CNN to denoise acoustic signals resulting from different radiation sources. The performance of the proposed method was evaluated using experimental data of x-ray-induced acoustic, protoacoustic, and electroacoustic signals both qualitatively and quantitatively. Results demonstrated the effectiveness of GDI-CNN: it achieved x-ray-induced acoustic image quality comparable to 750-frame-averaged results using only 10-frame-averaged measurements, reducing the imaging dose of x-ray-acoustic computed tomography (XACT) by 98.7%; it realized proton range accuracy parallel to 1500-frame-averaged results using only 20-frame-averaged measurements, improving the range verification frequency in proton therapy from 0.5 to 37.5 Hz; it reached electroacoustic image quality comparable to 750-frame-averaged results using only a single frame signal, increasing the electric field monitoring frequency from 1 fps to 1k fps. Compared to lowpass filter-based denoising, the proposed method demonstrated considerably lower mean-squared-errors, higher peak-SNR, and higher structural similarities with respect to the corresponding high-frame-averaged measurements. The proposed deep learning-based denoising framework is a generalized method for few-frame-averaged acoustic signal denoising, which significantly improves the RA imaging's clinical utilities for low-dose imaging and real-time therapy monitoring.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Acústica , Processamento de Imagem Assistida por Computador/métodos
8.
IEEE Trans Radiat Plasma Med Sci ; 7(1): 83-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37588600

RESUMO

Bragg peak range uncertainties are a persistent constraint in proton therapy. Pulsed proton beams generate protoacoustic emissions proportional to absorbed proton energy, thereby encoding dosimetry information in a detectable acoustic wave. Here, we seek to derive and model 3D protoacoustic imaging with an ultrasound array and examine the frequency characteristics of protoacoustic emissions. A formalism is presented through which protoacoustic signals can be characterized considering transducer bandwidth as well as pulse duration of the incident beam. We have also collected an experimental proton beam intensity signal from a Mevion S250 clinical machine to analyze our formalism. We also show that proton-acoustic image reconstruction is possible even when the noise amplitude is larger than the signal amplitude on individual transducers. We find that a 4µ s Gaussian proton pulse can generate a signal in the range of MHz as long as the spatial heating function has sufficiently high temperature gradients.

9.
ArXiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37608936

RESUMO

Protoacoustic imaging showed great promise in providing real-time 3D dose verification of proton therapy. However, the limited acquisition angle in protoacoustic imaging induces severe artifacts, which significantly impairs its accuracy for dose verification. In this study, we developed a deep learning method with a Recon- Enhance two-stage strategy for protoacoustic imaging to address the limited view issue. Specifically, in the Recon-stage, a transformer-based network was developed to reconstruct initial pressure maps from radiofrequency signals. The network is trained in a hybrid-supervised approach, where it is first trained using supervision by the iteratively reconstructed pressure map and then fine-tuned using transfer learning and self-supervision based on the data fidelity constraint. In the Enhance-stage, a 3D U-net is applied to further enhance the image quality with supervision from the ground truth pressure map. The final protoacoustic images are then converted to dose for proton verification. The results evaluated on a dataset of 126 prostate cancer patients achieved an average RMSE of 0.0292, and an average SSIM of 0.9618, significantly out-performing related start-of-the-art methods. Qualitative results also demonstrated that our approach addressed the limit-view issue with more details reconstructed. Dose verification achieved an average RMSE of 0.018, and an average SSIM of 0.9891. Gamma index evaluation demonstrated a high agreement (94.7% and 95.7% for 1%/3 mm and 1%/5 mm) between the predicted and the ground truth dose maps. Notably, the processing time was reduced to 6 seconds, demonstrating its feasibility for online 3D dose verification for prostate proton therapy.

10.
Adv Radiat Oncol ; 8(4): 101239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334315

RESUMO

Purpose: High-precision radiation therapy is crucial for cancer treatment. Currently, the delivered dose can only be verified via simulations with phantoms, and an in-tumor, online dose verification is still unavailable. An innovative detection method called x-ray-induced acoustic computed tomography (XACT) has recently shown the potential for imaging the delivered radiation dose within the tumor. Prior XACT imaging systems have required tens to hundreds of signal averages to achieve high-quality dose images within the patient, which reduces its real-time capability. Here, we demonstrate that XACT dose images can be reproduced from a single x-ray pulse (4 µs) with sub-mGy sensitivity from a clinical linear accelerator. Methods and Materials: By immersing an acoustic transducer in a homogeneous medium, it is possible to detect pressure waves generated by the pulsed radiation from a clinical linear accelerator. After rotating the collimator, signals of different angles are obtained to perform a tomographic reconstruction of the dose field. Using 2-stage amplification with further bandpass filtering increases the signal-to-noise ratio (SNR). Results: Acoustic peak SNR and voltage values were recorded for singular and dual-amplifying stages. The SNR for single-pulse mode was able to satisfy the Rose criterion, and the collected signals were able to reconstruct 2-dimensional images from the 2 homogeneous media. Conclusions: By overcoming the low SNR and requirement of signal averaging, single-pulse XACT imaging holds great potential for personalized dose monitoring from each individual pulse during radiation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA