Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(20): 14254-14262, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38690103

RESUMO

Thermal desorption provides an efficient solution to remediate soil contaminated with chlorinated organic pollutants. However, enhanced desorption efficiency is desired to facilitate easier and less costly remediation. Hence, nanoscale zero-valent iron (nZVI) was combined with thermal desorption to remove trichloroethene (TCE) and trichlorobenzene (TCB) from soil in a laboratory-scale study. The addition of nZVI greatly improved the desorption efficiency, especially at low temperature with 99.6% of TCE and 98.8% of TCB removed at 300 °C for 2 h. Characterization results revealed that the addition of nZVI loosened the structure of soil, preventing the soil from agglomerating during the thermal treatment. Besides, the analyses of dechlorination intermediates and the variation of Fe species proved the in situ dechlorination effect of nZVI and the redox cycle of Fe was revealed. Moreover, the influences of nZVI dosage and treatment time on thermal treatment were assessed. This study not only offers new perspectives for contaminated soil remediation, but also provides mechanistic insights into the dechlorination effect of nZVI in the thermal desorption.

2.
Neural Regen Res ; 18(12): 2743-2750, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449639

RESUMO

Cynops orientalis (C. orientalis) has a pronounced ability to regenerate its spinal cord after injury. Thus, exploring the molecular mechanism of this process could provide new approaches for promoting mammalian spinal cord regeneration. In this study, we established a model of spinal cord thoracic transection injury in C. orientalis, which is an endemic species in China. We performed RNA sequencing of the contused axolotl spinal cord at two early time points after spinal cord injury - during the very acute stage (4 days) and the subacute stage (7 days) - and identified differentially expressed genes; additionally, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, at each time point. Transcriptome sequencing showed that 13,059 genes were differentially expressed during C. orientalis spinal cord regeneration compared with uninjured animals, among which 4273 were continuously down-regulated and 1564 were continuously up-regulated. Down-regulated genes were most enriched in the Gene Ontology term "multicellular organismal process" and in the ribosome pathway at 10 days following spinal cord injury. We found that multiple genes associated with energy metabolism were down-regulated and multiple genes associated with the lysosome were up-regulated after spinal cord injury, indicating the importance of low metabolic activity during wound healing. Immune response-associated pathways were activated during the early acute phase (4 days), while the expression of extracellular matrix proteins such as glycosaminoglycan and collagen, as well as tight junction proteins, was lower at 10 days post-spinal cord injury than 4 days post-spinal cord injury. However, compared with 4 days post-injury, at 10 days post-injury neuroactive ligand-receptor interactions were no longer down-regulated, up-regulated differentially expressed genes were enriched in pathways associated with cancer and the cell cycle, and SHH, VIM, and Sox2 were prominently up-regulated. Immunofluorescence staining showed that glial fibrillary acidic protein was up-regulated in axolotl ependymoglial cells after injury, similar to what is observed in mammalian astrocytes after spinal cord injury, even though axolotls do not form a glial scar during regeneration. We suggest that low intracellular energy production could slow the rapid amplification of ependymoglial cells, thereby inhibiting reactive gliosis, at early stages after spinal cord injury. Extracellular matrix degradation slows cellular responses, represses the expression of neurogenic genes, and reactivates a transcriptional program similar to that of embryonic neuroepithelial cells. These ependymoglial cells act as neural stem cells: they migrate and proliferate to repair the lesion and then differentiate to replace lost glial cells and neurons. This provides the regenerative microenvironment that allows axon growth after injury.

3.
Front Endocrinol (Lausanne) ; 14: 1123124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843575

RESUMO

The UFM1 conjugation system(UFMylation)is a novel type of ubiquitin-like system that plays an indispensable role in maintaining cell homeostasis under various cellular stress. Similar to ubiquitination, UFMylation consists of a three-step enzymatic reaction with E1-like enzymes ubiquitin-like modifier activating enzyme5 (UBA5), E2-like enzymes ubiquitin-fold modifier-conjugating enzyme 1(UFC1), and E3-like ligase UFM1-specific ligase 1 (UFL1). As the only identified E3 ligase, UFL1 is responsible for specific binding and modification of the substrates to mediate numerous hormone signaling pathways and endocrine regulation under different physiological or pathological stress, such as ER stress, genotoxic stress, oncogenic stress, and inflammation. Further elucidation of the UFL1 working mechanism in multiple cellular stress responses is essential for revealing the disease pathogenesis and providing novel potential therapeutic targets. In this short review, we summarize the recent advances in novel UFL1 functions and shed light on the potential challenges ahead, thus hopefully providing a better understanding of UFMylation-mediated cellular stress.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Proteínas/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
4.
Int J Biol Macromol ; 234: 123714, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36806767

RESUMO

Streptococcus agalactiae, as one of the main pathogens of clinical and subclinical mastitis, affects animal welfare and leads to huge economic losses to farms due to the sharp decline in milk yield. However, both the real pathogenic mechanisms of S. agalactiae-induced mastitis and the regulator which controls the inflammation and autophagy are largely unknown. Served as a substrate of ubiquitin-like proteins of E3 ligase, CDK5RAP3 is widely involved in the regulation of multiple signaling pathways. Our findings revealed that CDK5RAP3 was significantly down-regulated in mastitis infected by S. agalactiae. Surprisingly, inflammasome activation was triggered by CDK5RAP3 knockdown: up-regulated NLRP3, IL1ß and IL6, and cleaved caspase1 promoting by NF-κB, thereby resulting in pyroptosis. Additionally, the accumulation of autophagy markers (LC3B and p62) after CDK5RAP3 knockdown suggested that the autophagolysosome degradation pathway was inhibited, thereby activating the NF-κB pathway and NLRP3 inflammasome. Hence, our findings suggest that downregulation or ablation of CDK5RAP3 inhibits autophagolysosome degradation, causes inflammation by activating the NF-κB /NLRP3 inflammasome, and triggers cell death. In conclusion, CDK5RAP3 holds the key to understanding the interaction between autophagy and immune responses, its anti-inflammatory role in this study will throw new light on the clinical drug discovery to cure S. agalactiae mastitis.


Assuntos
Inflamassomos , Mastite , Animais , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Inflamação/patologia , Mastite/genética , Mastite/patologia , Proteínas de Ciclo Celular , Proteínas Supressoras de Tumor
5.
J Hazard Mater ; 436: 129079, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739692

RESUMO

Hexavalent chromium (Cr(VI)) contaminated wastewater should be addressed efficiently in the environmental field. In previous applications, nano iron sulfides amendment has not been well controlled for iron-sulfur transformation. In this study, the novel flake and nanoscale porous pyrrhotite (Fe7S8) (FNPP) amendment was synthesized. The iron-sulphur transformation of FNPP was controlled and optimized for enhancing Cr(VI) removal. The specific surface area and average pore diameter of the FNPP amendment reached 115.7 m2/g and 2.1 nm. The maximum adsorption capacity of total chromium reached 66.3 mg/g. The optimized iron-sulphur transformation condition was an initial FNPP and Cr(VI) molar ratio of 8, pH at 5.6, in which the Cr(VI) removal reached 96.5% and all producing S2- was utterly consumed. It is confirmed that S2- fast induced Fe3+/Fe2+ circulation and FNPP has a speedier adsorption rate for Cr(III) than Cr(VI). Fe2+ and S2- mediated the Cr(VI) reduction to Cr(III), thus, much faster Cr(VI) removal was achieved. High efficiency removal mechanism of Cr(VI) was combined with surface adsorption/reduction and solution reduction/precipitation. The research demonstrated that controlling and optimizing the iron-sulphur transformation of Fe7S8 amendment can significantly enhance Cr(VI) removal.


Assuntos
Proteínas Ferro-Enxofre , Poluentes Químicos da Água , Adsorção , Cromo/análise , Ferro , Piperidinas , Porosidade , Enxofre , Águas Residuárias , Poluentes Químicos da Água/análise
6.
Quant Imaging Med Surg ; 10(5): 979-987, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489922

RESUMO

BACKGROUND: Although plain radiology is the primary method for assessing joint space width (JSW), it has poor sensitivity to change over time in regards to determining longitudinal progression. We, therefore, developed a new ultrasound (US) measurement method of knee JSW and aimed to provide a monitoring method for the change of JSW in the future. METHODS: A multicenter study was promoted by the Professional Committee of Musculoskeletal Ultrasound, the Ultrasound Society, and the Chinese Medical Doctor Association. US study of knee specimens determined the landmarks for ultrasonic measurement of knee JSW. The US of 1,272 participants from 27 centers was performed to discuss the feasibility and possible influencing factors of knee JSW. The landmarks for US measurement of knee JS, the inflection point of medial femoral epicondyle and the proximal end of the tibia, were determined. RESULTS: The mean knee JSW1 (medial knee JSW) was 8.57±1.95 mm in females and 9.52±2.31 mm in males. The mean knee JSW2 (the near medial knee JSW) was 9.07±2.24 mm in females and 10.17±2.35 mm in males. The JSW values of males were significantly higher than those of females, with a statistical difference. JSW values were negatively correlated with age and body mass index (BMI) to different degrees and positively correlated with height. CONCLUSIONS: The novel US measurement method can be used to measure knee JSW.

7.
Chem Biol Interact ; 311: 108760, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348916

RESUMO

1-Chloro-2-hydroxy-3-butene (CHB) is a possible metabolite of 1,3-butadiene, a carcinogenic air pollutant. To demonstrate its formation in vivo, it is desirable to develop a practical biomarker and the corresponding analysis method. CHB can undergo alcohol dehydrogenase- and cytochromes P450 enzymes (P450)-mediated oxidation to yield 1-chloro-3-buten-2-one (CBO), which readily forms glutathione conjugates. We hypothesized that CBO-derived mercapturic acids, which are the expected biotransformed products of CBO-glutathione conjugates, could be used as CHB biomarkers. Thus, in the present study, we investigated the in vivo biotransformation of CHB into CBO-derived mercapturic acids. Because the reaction of CBO with N-acetyl-l-cysteine yields two products, 1,4-bis(N-acetyl-S-cysteinyl)-2-butanone (NC1) and 1-chloro-4-(N-acetyl-S-cysteinyl)-2-butanone (NC2), we first developed an isotope dilution LC/ESI--MS-MS method to quantitate urinary NC1 and NC2, and then determined their concentrations in urine of C57BL/6 mice and Sprague-Dawley rats administered CHB. Since no NC2 was detected in samples, the LC/ESI--MS-MS method was optimized specifically for NC1. NC1 was enriched through solid phase extraction with the recovery being 75-82%. The limits of detection and quantitation were 6.8 and 34 fmol/0.1 mL for mouse urine, and 4.5 and 7.1 fmol/0.1 mL for rat urine, respectively. In urine of animals before CHB administration, no NC1 was detected; in mice administered CHB at 10 and 30 mg/kg, and rats at 5 and 15 mg/kg, NC1 was detected and its concentrations in urine from animals given higher doses were 3-6 fold higher than those given lower doses. Moreover, the NC1 concentrations in urine during 0-8 h were 4-6 fold and 10-11 fold higher than those during 8-24 h for mice and rats, respectively. The results demonstrated that CHB could be in vivo biotransformed into NC1, which could be used as a practical CHB biomarker.


Assuntos
Biomarcadores/urina , Butadienos/metabolismo , Butanóis/metabolismo , Espectrometria de Massas em Tandem , Acetilcisteína/química , Poluentes Atmosféricos/química , Animais , Butadienos/química , Butanóis/química , Cromatografia Líquida de Alta Pressão , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
8.
Am J Physiol Renal Physiol ; 299(1): F91-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20375116

RESUMO

Increased expression of the facilitative glucose transporter, GLUT1, leads to glomerulopathy that resembles diabetic nephropathy, whereas prevention of enhanced GLUT1 expression retards nephropathy. While many of the GLUT1-mediated effects are likely due to mesangial cell effects, we hypothesized that increased GLUT1 expression in podocytes also contributes to the progression of diabetic nephropathy. Therefore, we generated two podocyte-specific GLUT1 transgenic mouse lines (driven by a podocin promoter) on a db/m C57BLKS background. Progeny of the two founders were used to generate diabetic db/db and control db/m littermate mice. Immunoblots of glomerular lysates showed that transgenic mice had a 3.5-fold (line 1) and 2.1-fold (line 2) increase in GLUT1 content compared with wild-type mice. Both lines showed similar increases in fasting blood glucose and body weights at 24 wk of age compared with wild-type mice. Mesangial index (percent PAS-positive material in the mesangial tuft) increased 88% (line 1) and 75% (line 2) in the wild-type diabetic mice but only 48% (line 1) and 39% (line 2) in the diabetic transgenic mice (P < 0.05, transgenic vs. wild-type mice). This reduction in mesangial expansion was accompanied by a reduction in fibronectin accumulation, and vascular endothelial growth factor (VEGF) levels increased only half as much in the transgenic diabetic mice as in wild-type diabetic mice. Levels of nephrin, neph1, CD2AP, podocin, and GLUT4 were not significantly different in transgenic compared with wild-type mice. Taken together, increased podocyte GLUT1 expression in diabetic mice does not contribute to early diabetic nephropathy; surprisingly, it protects against mesangial expansion and fibronectin accumulation possibly by blunting podocyte VEGF increases.


Assuntos
Nefropatias Diabéticas/metabolismo , Mesângio Glomerular/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Glicemia/metabolismo , Peso Corporal , Proteínas do Citoesqueleto/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Regulação para Baixo , Jejum/sangue , Fibronectinas/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 4/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ratos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Lab Invest ; 90(1): 83-97, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19918242

RESUMO

Reduced nephron numbers may predispose to renal failure. We hypothesized that glucose transporters (GLUTs) may contribute to progression of the renal disease, as GLUTs have been implicated in diabetic glomerulosclerosis and hypertensive renal disease with mesangial cell (MC) stretch. The Os (oligosyndactyly) allele that typically reduces nephron number by approximately 50%, was repeatedly backcrossed from ROP (Ra/+ (ragged), Os/+ (oligosyndactyly), and Pt/+ (pintail)) Os/+ mice more than six times into the Fvb mouse background to obtain Os/+ and +/+ mice with the Fvb background for study. Glomerular function, GLUT1, signaling, albumin excretion, and structural and ultrastructural changes were assessed. The FvbROP Os/+ mice (Fvb background) exhibited increased glomerular GLUT1, glucose uptake, VEGF, glomerular hypertrophy, hyperfiltration, extensive podocyte foot process effacement, marked albuminuria, severe extracellular matrix (ECM) protein deposition, and rapidly progressive renal failure leading to their early demise. Glomerular GLUT1 was increased 2.7-fold in the FvbROP Os/+ mice vs controls at 4 weeks of age, and glucose uptake was increased 2.7-fold. These changes were associated with the activation of glomerular PKCbeta1 and NF-kappaB p50 which contribute to ECM accumulation. The cyclic mechanical stretch of MCs in vitro, used as a model for increased MC stretch in vivo, reproduced increased GLUT1 at 48 h, a stimulus for increased VEGF expression which followed at 72 h. VEGF was also shown to act in a positive feedback manner on MC GLUT1, increasing GLUT1 expression, glucose uptake and fibronectin (FN) accumulation in vitro, whereas antisense suppression of GLUT1 largely blocked FN upregulation by VEGF. The FvbROP Os/+ mice exhibited an early increase in glomerular GLUT1 leading to increased glomerular glucose uptake PKCbeta1, and NF-kappaB activation, with excess ECM accumulation. A GLUT1-VEGF-GLUT1 positive feedback loop may play a key role in contributing to renal disease in this model of nondiabetic glomerulosclerosis.


Assuntos
Albuminúria/etiologia , Transportador de Glucose Tipo 1/metabolismo , Camundongos Mutantes/metabolismo , Néfrons/anormalidades , Insuficiência Renal/etiologia , Insuficiência Renal/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alelos , Animais , Células Cultivadas , Creatinina/metabolismo , Progressão da Doença , Proteínas da Matriz Extracelular/metabolismo , Mesângio Glomerular/metabolismo , Mesângio Glomerular/patologia , Imuno-Histoquímica , Isoenzimas/metabolismo , Rim/crescimento & desenvolvimento , Rim/metabolismo , Rim/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes/genética , Microscopia Eletrônica , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Estresse Mecânico , Sindactilia/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
10.
J Biol Chem ; 280(12): 11608-14, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15677451

RESUMO

Unlike lower eukaryotes, mammalian genomes have a second gene, ATP2C2, encoding a putative member of the family of secretory pathway Ca2+,Mn(2+)-ATPases, SPCA2. Human SPCA2 shares 64% amino acid identity with the protein defective in Hailey Hailey disease, hSPCA1. We show that human SPCA2 (hSPCA2) has a more limited tissue distribution than hSPCA1, with prominent protein expression in brain and testis. In primary neuronal cells, endogenous SPCA2 has a highly punctate distribution that overlaps with vesicles derived from the trans-Golgi network and is thus different from the compact perinuclear distribution of hSPCA1 seen in keratinocytes and nonpolarized cells. Heterologous expression in a yeast strain lacking endogenous Ca2+ pumps reveals further functional differences from hSPCA1. Although the Mn(2+)-specific phenotype of hSPCA2 is similar to that of hSPCA1, Ca2+ ions are transported with much poorer affinity, resulting in only weak complementation of Ca(2+)-specific yeast phenotypes. These observations suggest that SPCA2 may have a more specialized role in mammalian cells, possibly in cellular detoxification of Mn2+ ions, similar to that in yeast. We point to the close links between manganese neurotoxicity and Parkinsonism that would predict an important physiological role for SPCA2 in the brain.


Assuntos
ATPases Transportadoras de Cálcio/fisiologia , Sequência de Aminoácidos , Química Encefálica , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/análise , ATPases Transportadoras de Cálcio/química , Complexo de Golgi/química , Humanos , Inativação Metabólica , Manganês/metabolismo , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA