RESUMO
We report herein the discovery and extensive characterization of ARD-1676, a highly potent and orally efficacious PROTAC degrader of the androgen receptor (AR). ARD-1676 was designed using a new class of AR ligands and a novel cereblon ligand. It has DC50 values of 0.1 and 1.1 nM in AR+ VCaP and LNCaP cell lines, respectively, and IC50 values of 11.5 and 2.8 nM in VCaP and LNCaP cell lines, respectively. ARD-1676 effectively induces degradation of a broad panel of clinically relevant AR mutants. ARD-1676 has an oral bioavailability of 67, 44, 31, and 99% in mice, rats, dogs, and monkeys, respectively. Oral administration of ARD-1676 effectively reduces the level of AR protein in the VCaP tumor tissue in mice and inhibits tumor growth in the VCaP mouse xenograft tumor model without any sign of toxicity. ARD-1676 is a highly promising development candidate for the treatment of AR+ human prostate cancer.
RESUMO
We report the discovery of ARD-2051 as a potent and orally efficacious androgen receptor (AR) proteolysis-targeting chimera degrader. ARD-2051 achieves DC50 values of 0.6 nM and Dmax >90% in inducing AR protein degradation in both the LNCaP and VCaP prostate cancer cell lines, potently and effectively suppresses AR-regulated genes, and inhibits cancer cell growth. ARD-2051 achieves a good oral bioavailability and pharmacokinetic profile in mouse, rat, and dog. A single oral dose of ARD-2051 strongly reduces AR protein and suppresses AR-regulated gene expression in the VCaP xenograft tumor tissue in mice. Oral administration of ARD-2051 effectively inhibits VCaP tumor growth and causes no signs of toxicity in mice. ARD-2051 is a promising AR degrader for advanced preclinical development for the treatment of AR+ human cancers.
Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Camundongos , Ratos , Animais , Cães , Receptores Androgênicos/metabolismo , Quimera de Direcionamento de Proteólise , Proteólise , Linhagem Celular Tumoral , Neoplasias da Próstata/patologiaRESUMO
The androgen receptor (AR) plays a key role in the maintenance of muscle and bone and the support of male sexual-related functions, as well as in the progression of prostate cancer. Accordingly, AR-targeted therapies have been developed for the treatment of related human diseases and conditions. AR agonists are an important class of drugs in the treatment of bone loss and muscle atrophy. AR antagonists have also been developed for the treatment of prostate cancer, including metastatic castration-resistant prostate cancer (mCRPC). Additionally, selective AR degraders (SARDs) have been reported. More recently, heterobifunctional degrader molecules of AR have been developed, and four such compounds are now in clinical development for the treatment of human prostate cancer. This review attempts to summarize the different types of compounds designed to target AR and the current frontiers of research on this important therapeutic target.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Antagonistas de Androgênios , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológicoRESUMO
We report herein the discovery of exceptionally potent and orally bioavailable PROTAC AR degraders with ARD-2585 being the most promising compound. ARD-2585 achieves DC50 values of ≤0.1 nM in the VCaP cell line with AR gene amplification and in the LNCaP cell line carrying an AR mutation. It potently inhibits cell growth with IC50 values of 1.5 and 16.2 nM in the VCaP and LNCaP cell lines, respectively, and achieves excellent pharmacokinetics and 51% of oral bioavailability in mice. It is more efficacious than enzalutamide in inhibition of VCaP tumor growth and does not cause any sign of toxicity in mice. ARD-2585 is a promising AR degrader for extensive investigations for the treatment of advanced prostate cancer.
Assuntos
Antineoplásicos/uso terapêutico , Ftalimidas/uso terapêutico , Piperidonas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Proteólise/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/farmacocinética , Antagonistas de Receptores de Andrógenos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Masculino , Camundongos SCID , Estrutura Molecular , Ftalimidas/síntese química , Ftalimidas/farmacocinética , Piperidonas/síntese química , Piperidonas/farmacocinética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Proteolysis targeting chimera (PROTAC) small-molecule degraders have emerged as a promising new type of therapeutic agents, but the design of PROTAC degraders with excellent oral pharmacokinetics is a major challenge. In this study, we present our strategies toward the discovery of highly potent PROTAC degraders of androgen receptor (AR) with excellent oral pharmacokinetics. Employing thalidomide to recruit cereblon/cullin 4A E3 ligase and through the rigidification of the linker, we discovered highly potent AR degraders with good oral pharmacokinetic properties in mice with ARD-2128 being the best compound. ARD-2128 achieves 67% oral bioavailability in mice, effectively reduces AR protein and suppresses AR-regulated genes in tumor tissues with oral administration, leading to the effective inhibition of tumor growth in mice without signs of toxicity. This study supports the development of an orally active PROTAC AR degrader for the treatment of prostate cancer and provides insights and guidance into the design of orally active PROTAC degraders.
Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Administração Oral , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Descoberta de Drogas , Meia-Vida , Humanos , Injeções Intravenosas , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A series of methoxy naphthyl substituted cyclopenta[d]pyrimidine compounds, 4-10, were designed and synthesized to study the influence of the 3-D conformation on microtubule depolymerizing and antiproliferative activities. NOESY studies with the N,2-dimethyl-N-(6'-methoxynaphthyl-1'-amino)-cyclopenta[d]pyrimidin-4-amine (4) showed hindered rotation of the naphthyl ring around the cyclopenta[d]pyrimidine scaffold. In contrast, NOESY studies with N,2-dimethyl-N-(5'-methoxynaphthyl-2'-amino)-cyclopenta[d]pyrimidin-4-amine (5) showed free rotation of the naphthyl ring around the cyclopenta[d]pyrimidine scaffold. The rotational flexibility and conformational dissimilarity between 4 and 5 led to a significant difference in biological activities. Compound 4 is inactive while 5 is the most potent in this series with potent microtubule depolymerizing effects and low nanomolar IC50 values in vitro against a variety of cancer cell lines. The ability of 5 to inhibit tumor growth in vivo was investigated in a U251 glioma xenograft model. The results show that 5 had better antitumor effects than the positive control temozolomide and have identified 5 as a potential preclinical candidate for further studies. The influence of conformation on the microtubule depolymerizing and antitumor activity forms the basis for the development of conformation-activity relationships for the cyclopenta[d]pyrimidine class of microtubule targeting agents.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Ciclopentanos/farmacologia , Glioma/tratamento farmacológico , Microtúbulos/efeitos dos fármacos , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Conformação Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Tropomyosin receptor kinases (TRKs) are promising cancer therapeutic targets. Chen ( J. Med. Chem. 2020, DOI: 10.1021/acs.jmedchem.0c01342) report the discovery of CG416 and CG428 as two potent small-molecule proteolysis-targeting chimera (PROTAC) degraders selective for TRKA over TRKB and TRKC. CG416 and CG428 are valuable research tool compounds for in vitro and in vivo studies and promising lead compounds for further optimization.
Assuntos
Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Proteólise , Proteômica , Receptor trkA/antagonistas & inibidoresRESUMO
Androgen receptor (AR) is a validated therapeutic target for the treatment of metastatic castration-resistant prostate cancer (mCRPC). We report herein our design, synthesis, and biological characterization of highly potent small-molecule proteolysis targeting chimera (PROTAC) AR degraders using a potent AR antagonist and E3 ligase ligands with weak binding affinities to VHL protein. Our study resulted in the discovery of 11 (ARD-266), which effectively induces degradation of AR protein in AR-positive (AR+) LNCaP, VCaP, and 22Rv1 prostate cancer cell lines with DC50 values of 0.2-1 nM. ARD-266 is capable of reducing the AR protein level by >95% in these AR+ prostate cancer cell lines and effectively reduces AR-regulated gene expression suppression. For the first time, we demonstrated that an E3 ligand with micromolar binding affinity to its E3 ligase complex can be successfully employed for the design of highly potent and efficient PROTAC degraders and this finding may have a significant implication for the field of PROTAC research.
Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Descoberta de Drogas , Piperidinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteólise/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Antagonistas de Receptores de Andrógenos/química , Proliferação de Células , Desenho de Fármacos , Humanos , Ligantes , Masculino , Piperidinas/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Androgênicos/química , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
We previously showed that classical 6-substituted pyrrolo[2,3-d]pyrimidine antifolates bind to folate receptor (FR) α and the target purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFTase) with different cis and trans conformations. In this study, we designed novel analogs of this series with an amide moiety in the bridge region that can adopt both the cis and trans lowest energy conformations. This provides entropic benefit, by restricting the number of side-chain conformations of the unbound ligand to those most likely to promote binding to FRα and the target enzyme required for antitumor activity. NMR of the most active compound 7 showed both cis and trans amide bridge conformations in ~1:1 ratio. The bridge amide group in the best docked poses of 7 in the crystal structures of FRα and GARFTase adopted both cis and trans conformations, with the lowest energy conformations predicted by Maestro and evidenced by NMR within 1â¯kcal/mol. Compound 7 showed ~3-fold increased inhibition of FRα-expressing cells over its non-restricted parent analog 1 and was selectively internalized by FRα over the reduced folate carrier (RFC), resulting in significant in vitro antitumor activity toward FRα-expressing KB human tumor cells. Antitumor activity of 7 was abolished by treating cells with adenosine but was incompletely protected by 5-aminoimidazole-4-carboxamide (AICA) at higher drug concentrations, suggesting GARFTase and AICA ribonucleotide formyltransferase (AICARFTase) in de novo purine biosynthesis as the likely intracellular targets. GARFTase inhibition by compound 7 was confirmed by an in situ cell-based activity assay. Our results identify a "first-in-class" classical antifolate with a novel amide linkage between the scaffold and the side chain aryl L-glutamate that affords exclusive selectivity for transport via FRα over RFC and antitumor activity resulting from inhibition of GARFTase and likely AICARFTase. Compound 7 offers significant advantages over clinically used inhibitors of this class that are transported by the ubiquitous RFC, resulting in dose-limiting toxicities.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Piridinas/química , Piridinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Amidas/química , Amidas/farmacocinética , Amidas/farmacologia , Animais , Antineoplásicos/farmacocinética , Vias Biossintéticas/efeitos dos fármacos , Células CHO , Linhagem Celular Tumoral , Cricetulus , Receptor 1 de Folato/metabolismo , Antagonistas do Ácido Fólico/farmacocinética , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nucleotídeos de Purina/metabolismo , Piridinas/farmacocinética , Pirróis/farmacocinéticaRESUMO
We report herein the discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69). ARD-69 induces degradation of AR protein in AR-positive prostate cancer cell lines in a dose- and time-dependent manner. ARD-69 achieves DC50 values of 0.86, 0.76, and 10.4 nM in LNCaP, VCaP, and 22Rv1 AR+ prostate cancer cell lines, respectively. ARD-69 is capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression. ARD-69 potently inhibits cell growth in these AR-positive prostate cancer cell lines and is >100 times more potent than AR antagonists. A single dose of ARD-69 effectively reduces the level of AR protein in xenograft tumor tissue in mice. Further optimization of ARD-69 may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.
Assuntos
Antagonistas de Receptores de Andrógenos/química , Proteólise , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Proteólise/efeitos dos fármacos , Receptores Androgênicos/genética , Relação Estrutura-Atividade , Transplante Heterólogo , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismoRESUMO
Myeloid cell leukemia-1 (MCL-1), a member of antiapoptotic BCL-2 family proteins, is a key regulator of mitochondrial homeostasis. Frequent overexpression of MCL-1 in human primary and drug-resistant cancer cells makes it an attractive cancer therapeutic target. Significant progress has been made in the development of small-molecule MCL-1 inhibitors in recent years, and three MCL-1 selective inhibitors have advanced to clinical trials. This review briefly discusses recent advances in the development of small molecules targeting MCL-1 for cancer therapy.
RESUMO
Proteins of the bromodomain and extra-terminal (BET) family are epigenetics "readers" and promising therapeutic targets for cancer and other human diseases. We describe herein a structure-guided design of [1,4]oxazepines as a new class of BET inhibitors and our subsequent design, synthesis, and evaluation of proteolysis-targeting chimeric (PROTAC) small-molecule BET degraders. Our efforts have led to the discovery of extremely potent BET degraders, exemplified by QCA570, which effectively induces degradation of BET proteins and inhibits cell growth in human acute leukemia cell lines even at low picomolar concentrations. QCA570 achieves complete and durable tumor regression in leukemia xenograft models in mice at well-tolerated dose-schedules. QCA570 is the most potent and efficacious BET degrader reported to date.
Assuntos
Desenho de Fármacos , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinéticaRESUMO
We report a series of tubulin targeting agents, some of which demonstrate potent antiproliferative activities. These analogs were designed to optimize the antiproliferative activity of 1 by varying the heteroatom substituent at the 4'-position, the basicity of the 4-position amino moiety, and conformational restriction. The potential metabolites of the active compounds were also synthesized. Some compounds demonstrated single digit nanomolar IC50 values for antiproliferative effects in MDA-MB-435 melanoma cells. Particularly, the S-methyl analog 3 was more potent than 1 in MDA-MB-435 cells (IC50â¯=â¯4.6â¯nM). Incubation of 3 with human liver microsomes showed that the primary metabolite of the S-methyl moiety of 3 was the methyl sulfinyl group, as in analog 5. This metabolite was equipotent with the lead compound 1 in MDA-MB-435 cells (IC50â¯=â¯7.9â¯nM). Molecular modeling and electrostatic surface area were determined to explain the activities of the analogs. Most of the potent compounds overcome multiple mechanisms of drug resistance and compound 3 emerged as the lead compound for further SAR and preclinical development.