Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570003

RESUMO

The challenge of drug resistance in bacteria caused by the over use of biotics is increasing during the therapy process, which has attracted great attentions of the clinicians and scientists around the world. Recently, photodynamic therapy (PDT) triggered by photosensitizer (PS) has become a promising treatment method because of its high efficacy, easy operation, and low side effect. Herein, the poly-l-lysine (PLL) modified metal-organic framework (MOF) nanoparticles, ZIF/PLL-CIP/CUR, were synthesized to allow both reactive oxygen species (ROS) responsive drug release and photodynamic effect for synergistic therapy against drug resistant bacterial infections. The PLL was modified on the shell of the zeolite imidazole framework (ZIF) by the ROS-responsive thioketal linker for controllable CIP release. CUR were encapsulated in ZIF as the photosensitizer for blue light mediated photodynamic effect to produce singlet oxygen (1O2) and superoxide anion radical (O2-) for efficient inhibition towards methicillin-resistant Staphylococcus aureus (MRSA). The charge conversion from negative charge (-4.6 mV) to positive charge (2.6 mV) was observed at pH 7.4 and pH 5.5, and 70.9 % CIP was found released at pH 5.5 in the presence of H2O2, which suggests the good biosafety at physiological pH and ROS-responsive drug release of the as-prepared nanoparticle in the bacterial microenvironment. The as-prepared nanoparticles could effectively kill MRSA and disrupt bacterial biofilm by combination of chemo- and photodynamic therapy. In mice model, the as-prepared nanoparticles exhibited excellent biosafety and synergistic effect with 98.81 % healing rate in treatment of MRSA infection, which is considered as a promising candidate in combating drug resistant bacterial infection.


Assuntos
Estruturas Metalorgânicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polilisina , Espécies Reativas de Oxigênio , Polilisina/química , Polilisina/farmacologia , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Nanopartículas/química , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Concentração de Íons de Hidrogênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Liberação Controlada de Fármacos , Curcumina/farmacologia , Curcumina/química , Infecções Estafilocócicas/tratamento farmacológico
2.
Int J Biol Macromol ; 219: 597-610, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35952811

RESUMO

The treatment of drug-resistant bacterial infections attributed to the overuse of antibiotics still remains a serious challenge globally. Herein, zwitterionic charge switchable meso-silica/polypeptide hybrid nanoparticles (MSPNs) were prepared for the synergistic chemo-photodynamic therapy in the treatment of drug-resistant bacterial infections. Subsequently, azithromycin (AZT) and methylene blue (MB) were loaded in the MSPNs to form the combined chemo-photodynamic therapeutic nanoparticles (MSPNs-AZT/MB) for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Remarkably, the as-prepared MSPNs-AZT/MB exhibited a negative surface charge of -5.2 mV at physiological pH while switching into positive surface charge of 24.7 mv in an acidic environment, leading to enhanced binding with bacterial surface. The lipase-triggered AZT release up to 77.9 % was achieved, and the loaded MB demonstrated efficient singlet oxygen (1O2) generation for photodynamic therapy. The in vitro experimental results displayed an excellent antibacterial effect against MRSA in both planktonic and biofilm phenotypes. Additionally, the as-prepared MSPNs-AZT/MB exhibited synergistic and enhanced antibacterial infection effect up to 94 % comparing to monotherapy in a mice model. Considering the above advantages, the as-prepared combined chemo-photodynamic therapeutic nanoparticles showed promising biocompatibility and clinical potential for the efficient therapy of drug-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Fotoquimioterapia , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Lipase/farmacologia , Azul de Metileno/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dióxido de Silício/farmacologia , Oxigênio Singlete , Infecções Estafilocócicas/tratamento farmacológico
3.
Theranostics ; 10(22): 10245-10261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929346

RESUMO

Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer-related deaths globally because of high metastasis and recurrence rates. Elucidating the molecular mechanisms of HCC recurrence and metastasis and developing effective targeted therapies are expected to improve patient survival. The promising anti-cancer agents for the treatment of hematological malignancies, histone deacetylase inhibitors (HDIs), have limited effects against epithelial cell-derived cancers, including HCC, the mechanisms involved have not been elucidated. Herein, we studied the molecular mechanisms underlying HDI-induced epithelial-mesenchymal transition (EMT) involving FOXO1-mediated autophagy. Methods: The biological functions of HDIs in combination with autophagy inhibitors were examined both in vitro and in vivo. Cell autophagy was assessed using the generation of mRFP-GFP-LC3-expressing cells and fluorescent LC3 puncta analysis, Western blotting, and electron microscopy. An orthotopic hepatoma model was established in mice for the in vivo experiments. Results: Our study provided novel mechanistic insights into HDI-induced EMT mediated by the autophagy AMPK-FOXO1-ULK1-Snail signaling axis. We demonstrated that autophagy served as a pro-metastasis mechanism in HDI-treated hepatoma cells. HDIs induced autophagy via a FOXO1-dependent pathway, and FOXO1 inhibition promoted HDI-mediated apoptosis in hepatoma cells. Thus, our findings provided novel insights into the molecular mechanisms underlying HDI-induced EMT involving FOXO1-mediated autophagy and demonstrated that a FOXO1 inhibitor exerted a synergistic effect with an HDI to inhibit cell growth and metastasis in vitro and in vivo. Conclusion: We demonstrated that HDIs triggers FOXO1-dependent autophagy, which ultimately promotes EMT, limiting the clinical outcome of HDI-based therapies. Our study suggests that the combination of an HDI and a FOXO1 inhibitor is an effective therapeutic strategy for the treatment of HCC.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 32(6): 978-84, 2007 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-18182713

RESUMO

OBJECTIVE: To compare the proteome difference of nasopharyngeal carcinoma (NPC) cell lines 5-8F and 6-10B, and to screen these proteins associated with NPC metastasis. METHODS: Two-dimensional gel electrophoresis (2-DE) was used to separate the total proteins from NPC cell lines 5-8F and 6-10B with different metastatic potentials and same genetic background, respectively. PDQuest software was applied to analyze 2-DE images, and the differentially expressed protein spots between 5-8F and 6-10B were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The expression levels of partial identified proteins in the 2 cell lines were detected by Western blot. RESULTS: 2-DE maps of total proteins from 5-8F and 6-10B were established. A total of 65 differential protein spots in the 2 cell lines were found, and 15 non-redundant differential expression proteins were identified by MALDI-TOF-MS. Western blot showed that Annexin A1 and 14-3-3 protein sigma were differential expression proteins in 5-8F and 6-10B, which was consistent with the Results from the comparative proteomic analysis. CONCLUSION: Fifteen non-redundant differential expression proteins are useful for studying the metastatic mechanism of NPC.


Assuntos
Neoplasias Nasofaríngeas/metabolismo , Proteoma/metabolismo , Carcinoma , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Humanos , Espectrometria de Massas , Carcinoma Nasofaríngeo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA