Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 75(5): 247-257, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35288678

RESUMO

Three new lipopeptaibols, halovirs I-K (1-3), were isolated from the solid culture of the phytopathogenic fungus Paramyrothecium roridum NRRL 2183. Their planar structures, which consist of a hexapeptide backbone and acyl substitutions at the N- and C-termini, were elucidated by comprehensive analysis of the 1D and 2D NMR spectroscopic data along with the detailed interpretation of the MS/MS fragmentation pattern. Absolute configurations of the amino acid/1,2-amino alcohol residues were determined using the advanced Marfey's method. Bioinformatics analysis of the genome assembly of P. roridum NRRL 2183 revealed a gene cluster that is likely responsible for the biosynthesis of halovirs I-K. Analysis of the module and domain organization of the putative halovir synthetase PrHalA indicated that the assembly of 1-3 proceeds in an unconventional nonlinear fashion. 1 and 2 exhibited potent antibacterial activity against both antibiotic-sensitive and multidrug-resistant Gram-positive pathogens. These lipopeptaibols also displayed significant cytotoxicity toward human lung carcinoma A549, human breast carcinoma MCF-7, and human cervical carcinoma HeLa cells with IC50 values ranging from 1.3 to 3.3 µM.


Assuntos
Antineoplásicos , Carcinoma , Hypocreales , Antibacterianos/farmacologia , Antineoplásicos/química , Células HeLa , Humanos , Hypocreales/química , Estrutura Molecular , Espectrometria de Massas em Tandem
2.
mSphere ; 5(6)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239367

RESUMO

Total biosynthesis or whole-cell biocatalytic production of sulfated small molecules relies on the discovery and implementation of appropriate sulfotransferase enzymes. Although fungi are prominent biocatalysts and have been used to sulfate drug-like phenolics, no gene encoding a sulfotransferase enzyme has been functionally characterized from these organisms. Here, we identify a phenolic sulfotransferase, FgSULT1, by genome mining from the plant-pathogenic fungus Fusarium graminearum PH-1. We expressed FgSULT1 in a Saccharomyces cerevisiae chassis to modify a broad range of benzenediol lactones and their nonmacrocyclic congeners, together with an anthraquinone, with the resulting unnatural natural product (uNP) sulfates displaying increased solubility. FgSULT1 shares low similarity with known animal and plant sulfotransferases. Instead, it forms a sulfotransferase family with putative bacterial and fungal enzymes for phase II detoxification of xenobiotics and allelochemicals. Among fungi, putative FgSULT1 homologues are encoded in the genomes of Fusarium spp. and a few other genera in nonsyntenic regions, some of which may be related to catabolic sulfur recycling. Computational structure modeling combined with site-directed mutagenesis revealed that FgSULT1 retains the key catalytic residues and the typical fold of characterized animal and plant sulfotransferases. Our work opens the way for the discovery of hitherto unknown fungal sulfotransferases and provides a synthetic biological and enzymatic platform that can be adapted to produce bioactive sulfates, together with sulfate ester standards and probes for masked mycotoxins, precarcinogenic toxins, and xenobiotics.IMPORTANCE Sulfation is an expedient strategy to increase the solubility, bioavailability, and bioactivity of nutraceuticals and clinically important drugs. However, chemical or biological synthesis of sulfoconjugates is challenging. Genome mining, heterologous expression, homology structural modeling, and site-directed mutagenesis identified FgSULT1 of Fusarium graminearum PH-1 as a cytosolic sulfotransferase with the typical fold and active site architecture of characterized animal and plant sulfotransferases, despite low sequence similarity. FgSULT1 homologues are sparse in fungi but form a distinct clade with bacterial sulfotransferases. This study extends the functionally characterized sulfotransferase superfamily to the kingdom Fungi and demonstrates total biosynthetic and biocatalytic synthetic biological platforms to produce unnatural natural product (uNP) sulfoconjugates. Such uNP sulfates may be utilized for drug discovery in human and veterinary medicine and crop protection. Our synthetic biological methods may also be adapted to generate masked mycotoxin standards for food safety and environmental monitoring applications and to expose precarcinogenic xenobiotics.


Assuntos
Fusarium/genética , Sulfotransferases/química , Sulfotransferases/genética , Sulfotransferases/metabolismo , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Células Vero
3.
J Nat Prod ; 83(7): 2246-2254, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32663025

RESUMO

Seven new 4-acyl-2-aminoimidazoles, designated strepimidazoles A-G (1-7), were discovered from the endophytic Streptomyces sp. PKU-EA00015 isolated from Salvia miltiorrhiza Bunge, whose dry root "Danshen" is one of the most widely used traditional Chinese medicines. The resonance signals of the 2-aminoimidazole moiety in 1-7 were absent in the NMR spectra due to tautomerization, and the structures of 1-7 were identified after preparation of their acetylation products 1a-7a, respectively. Compounds 1-7 represent a new family of 2-aminoimidazole-containing natural products, enriching the structural diversity of natural products from endophytic origin. Compounds 1-7 showed different degrees of inhibitory activities against the plant pathogenic fungus Verticillium dahliae V991, revealing structure-activity relationships on the acyl moieties. The plant pathogenic fungus V. dahliae has been confirmed to cause serious chlorosis of cultivated S. miltiorrhiza Bunge in China. This study opens the door for further investigation of mutualistic relationships between S. miltiorrhiza Bunge and their endophytic actinomycetes and for possible antifungal agent development for biological control of V. dahliae in the future.


Assuntos
Ascomicetos/efeitos dos fármacos , Imidazóis/farmacologia , Plantas/microbiologia , Streptomyces/química , Ascomicetos/patogenicidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Imidazóis/isolamento & purificação , Medicina Tradicional Chinesa , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise Espectral/métodos
4.
J Cell Biochem ; 121(11): 4542-4557, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048762

RESUMO

Perturbations in the balanced process of osteoblast-mediated bone formation and osteoclast-mediated bone resorption leading to excessive osteoclast formation and/or activity is the cause of many pathological bone conditions such as osteoporosis. The osteoclast is the only cell in the body capable of resorbing and degrading the mineralized bone matrix. Osteoclast formation from monocytic precursors is governed by the actions of two key cytokines macrophage-colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). Binding of RANKL binding to receptor RANK initiates a series of downstream signaling responses leading to monocytic cell differentiation and fusion, and subsequent mature osteoclast bone resorption and survival. The phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) signaling cascade is one such pathway activated in response to RANKL. The 3-phosphoinositide-dependent protein kinase 1 (PDK1), is considered the master upstream lipid kinase of the PI3K-Akt cascade. PDK1 functions to phosphorylate and partially activate Akt, triggering the activation of downstream effectors. However, the role of PDK1 in osteoclasts has yet to be clearly defined. In this study, we specifically deleted the PDK1 gene in osteoclasts using the cathepsin-K promoter driven Cre-LoxP system. We found that the specific genetic ablation of PDK1 in osteoclasts leads to an osteoclast-poor osteopetrotic phenotype in mice. In vitro cellular assays further confirmed the impairment of osteoclast formation in response to RANKL by PDK1-deficient bone marrow macrophage (BMM) precursor cells. PDK1-deficient BMMs exhibited reduced ability to reorganize actin cytoskeleton to form a podosomal actin belt as a result of diminished capacity to fuse into giant multinucleated osteoclasts. Notably, biochemical analyses showed that PDK1 deficiency attenuated the phosphorylation of Akt and downstream effector GSK3ß, and reduced induction of NFATc1. GSK3ß is a reported negative regulator of NFATc1. GSK3ß activity is inhibited by Akt-dependent phosphorylation. Thus, our data provide clear genetic and mechanistic insights into the important role for PDK1 in osteoclasts.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/fisiologia , Reabsorção Óssea/patologia , Regulação da Expressão Gênica , Osteoclastos/patologia , Osteopetrose/patologia , Animais , Apoptose , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteopetrose/etiologia , Osteopetrose/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA