Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(6): 3413-3427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111159

RESUMO

BACKGROUND: Processed meat, as an important part of the human diet, has been recognized as a carcinogen by the International Agency for Research on Cancer (IARC). Although numerous epidemiological reports supported the IARC's view, the relevant evidence of a direct association between processed meat and carcinogenicity has been insufficient and the mechanism has been unclear. This study aims to investigate the effects of pork sausage (as a representative example of processed meat) intake on gut microbial communities and metabolites of mice. Microbial communities and metabolites from all groups were analyzed using 16S rRNA gene sequencing and Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometer (UPLC-Q-TOF/MS), respectively. RESULTS: The levels of Bacteroidetes, Bacteroides, Alloprevotella, Lactobacillus, Prevotella_9, Lachnospiraceae_NK4A136_group, Alistipes, Blautia, Proteobacteria, Firmicutes, Allobaculum, Helicobacter, Desulfovibrio, Clostridium_sensu_stricto_1, Ruminococcaceae_UCG-014, Lachnospiraceae_UCG-006 and Streptococcus (P < 0.05) were obviously altered in the mice fed a pork sausage diet. Twenty-seven metabolites from intestinal content samples and fourteen matabolites from whole blood samples were identified as potential biomarkers from multivariate analysis, including Phosphatidic acid (PA), Sphingomyelin (SM), Lysophosphatidylcholine (LysoPC), Diglyceride (DG), D-maltose, N-acylamides and so forth. The significant changes in these biomarkers demonstrate metabonomic variations in pork sausage treated rats, especially carbohydrate metabolism, lipid metabolism, and amino acid metabolism. CONCLUSION: The present study provided evidence that a processed meat diet can increase the risk of colorectal cancer and other diseases significantly by altering the microbial community structure and disrupting the body's metabolic pathways. © 2023 Society of Chemical Industry.


Assuntos
Carne de Porco , Carne Vermelha , Camundongos , Ratos , Humanos , Animais , Suínos , RNA Ribossômico 16S , Metabolômica , Biomarcadores
2.
Foods ; 12(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107526

RESUMO

Additives can influence the processability and quality of three-dimensional (3D)-printed foods. Herein, the effects of apple polyphenols on the antioxidant activity and structure of 3D-printed processed cheese were investigated. The antioxidant activities of processed cheese samples with different contents of apple polyphenols (0%, 0.4%, 0.8%, 1.2%, or 1.6%) were evaluated using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) assays. In addition, the rheological properties and structural characteristics of the processed cheeses were investigated using rheometry, Fourier transform infrared spectroscopy, and fluorescence spectroscopy. Then, the final printed products were analyzed for comparative molding effects and dimensional characteristics. it was found that apple polyphenols can significantly improve the antioxidant activity of processed cheese. When the amount of apple polyphenols added was 0.8%, the 3D shaping effect was optimal with a porosity rate of 4.1%. Apple polyphenols can be used as a good antioxidant additive, and the moderate addition of apple polyphenols can effectively improve the antioxidant and structural stability of 3D-printed processed cheese.

3.
Ultrason Sonochem ; 86: 106025, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35533432

RESUMO

It is essential to understand the ultrasound-induced changes in assembly of proteins and polyphenols into non covalent nanocomplex. ß-Lactoglobulin (LG) and chlorogenic acid (CA) with various biological activities can be combined to form food-grade nanocomplexes. This study systematically explored the role of high-intensity ultrasound pretreatment on the binding mechanisms of LG and CA, and the potential biological function for embedding curcumin (Cur). The scanning electron microscopy (SEM) revealed that ultrasound treatment could destroy the structure of LG, and the particle size of the protein was reduced to<50 nm. The change in secondary structure of the protein by ultrasound treatment could be revealed by the fourier transform infrared (FTIR) and fluorescence spectra. Besides, it was found that LG and CA were combined to form a complex under the hydrophobic interaction, and CA was bound in the internal cavity of LG with a relatively extended conformation. The result demonstrated that the ratio of Cur embedded in the ultrasonic sample could be effectively increased by 7% - 10%, the particle size in the emulsion was smaller, and the dispersion was more stable. This work contributes to the development of protein-polyphenol functional emulsion systems with the ability to deliver Cur.


Assuntos
Curcumina , Lactoglobulinas , Ácido Clorogênico , Curcumina/química , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Lactoglobulinas/química , Polifenóis
4.
Food Funct ; 12(22): 11331-11342, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34668003

RESUMO

Supplementation of probiotics is a promising method to alleviate colorectal cancer (CRC) via modulating the intestinal microenvironment. This study aimed to assess the potential anti-CRC effect of Companilactobacillus crustorum MN047 on an azoxymethane and dextran sulfate sodium-induced colitis-associated (CA)-CRC mouse model. Mice were gavaged with C. crustorum MN047 once daily (∼1 × 109 CFU per mouse). The CA-CRC ameliorating effect of this strain was investigated based on the gut microbiota, inflammation and intestinal barrier integrity. Results showed that C. crustorum MN047 could significantly attenuate tumorigenesis and inflammation via suppressing the TLR4/NF-κB pathway. Moreover, this probiotic could improve the intestinal barrier integrity by increasing the mRNA level of some tight junction-related proteins and reducing goblet cell loss. In addition, C. crustorum MN047 administration led to an increase in beneficial bacteria and a decrease in harmful bacteria, thereby increasing SCFAs and reducing LPS levels. These results suggested that C. crustorum MN047 could partially ameliorate the formation of CA-CRC by modulating the gut microbiota, attenuating inflammation and enhancing the intestinal barrier integrity. Therefore, C. crustorum MN047 was a promising probiotic supplement for attenuating CA-CRC.


Assuntos
Carcinogênese/efeitos dos fármacos , Colite/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus , Probióticos/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos
5.
J Chromatogr Sci ; 58(5): 471-476, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32016423

RESUMO

This study established a rapid and reliable method to determine chloramphenicol (CAP), thiamphenicol (TAP) and florfenicol (FF) residues in Chinese gelatin medicines. CAP, TAP and FF were extracted from medicine samples using 2% (v/v) ammonium hydroxide in acetonitrile. Trypsin was used to eliminate the matrix effect caused by protein components in gelatin medicines, whereas anhydrous sodium sulfate, C18-N and NH2-PSA adsorbents were applied to reduce matrix effect induced by other components. The analytical method of these drugs was optimized on ultra high-performance liquid chromatography-mass spectrometer (UHPLC-MS/MS) through the analysis of their standard linearity and regression. The optimized extraction and analytical method were validated in one Chinese gelatin medicine sample (Colla corii asini, E Jiao) with three fortification levels (2, 5 and 10 µg/kg), and the recoveries of these drug residues ranged of 87.6-102.7%. The limit of detection and quantification of CAP, TAP and FF in the sample were 0.2 and 0.5 µg/kg, 0.4 and 1.5 µg/kg, and 0.5 and 1.5 µg/kg, respectively. A total of 30 Chinese gelatin medicine samples were analyzed using the established method. No drug residues were found in these samples except for one Testudinis Carapacis et Plastri (1.67 µg/kg FF) and one turtle shell glue (2.55 µg/kg FF).


Assuntos
Cloranfenicol/análise , Cromatografia Líquida de Alta Pressão/métodos , Gelatina/análise , Extração em Fase Sólida/métodos , Tianfenicol/análogos & derivados , Tianfenicol/análise , Animais , Antibacterianos/análise , Contaminação de Medicamentos , Resíduos de Drogas/análise , Equidae , Gelatina/química , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA