Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31446007

RESUMO

Phenethyl isothiocyanate (PEITC) is one of the glucosinolates (GLs) present in cruciferous vegetables. Although there are many reports of livestock and poultry poisoning caused by plants containing GLs, the actual dosage that causes poisoning and the characteristics of GLs and their metabolites are unclear. Herein, we investigated the inhibitory effects of PEITC on IPEC-J2 cells and examined the mechanisms of PEITC-induced apoptosis via the mitochondrial pathway. Cell viability was determined by the MTT assay, and the levels of reactive oxygen species, mitochondrial membrane potential (∆Ψ), intracellular Ca2+ concentration, and cell apoptosis were detected by flow cytometry. IPEC-J2 cells were collected to assess the activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as the contents of glutathione, malondialdehyde, H2O2, ATP, and lactate dehydrogenase, using biochemical methods. The levels of cytochrome c, Bax, Bcl-2, caspase-3, caspase-9, poly (ADP-ribose) polymerase (PARP)-1, p53, CDC25C, and cyclin A2 were analyzed by western blotting. We found that PEITC effectively inhibited the growth of IPEC-J2 cells, causing apoptosis. PEITC suppressed the level of mitochondrial membrane potential; released cytochrome c from the mitochondria to the cytoplasm; reduced ATP levels; inhibited Bcl-2 expression; increased Bax expression; and activated caspase-9, caspase-3, and PARP-1, leading to apoptosis. PEITC also induced G2/M and S phase arrest by affecting cell cycle-associated proteins such as p53, CDC25C, and cyclin A2. We conclude that PEITC causes oxidative stress, cell cycle arrest, and apoptosis in IPEC-J2 cells via a mitochondrial-dependent Bax/Bcl-2 pathway.


Assuntos
Brassicaceae/metabolismo , Pontos de Checagem do Ciclo Celular , Sobrevivência Celular , Isotiocianatos/toxicidade , Mitocôndrias/metabolismo , Animais , Apoptose , Linhagem Celular , Potencial da Membrana Mitocondrial , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
2.
Toxins (Basel) ; 11(7)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323908

RESUMO

The presence of tannic acid (TA), which is widely distributed in plants, limits the utilization of non-grain feed. Illustrating the toxicity mechanism of TA in animals is important for preventing poisoning and for clinical development of TA. The aim of the present study was to evaluate the toxic effects and possible action mechanism of TA in porcine intestinal IPEC-J2 cells, as well as cell proliferation, apoptosis, and cell cycle. We investigated the toxic effects of TA in IPEC-J2 cells combining the analysis of TA-induced apoptotic responses and effect on the cell cycle. The results revealed that TA is highly toxic to IPEC-J2 cells. The stress-inducible factors reactive oxygen species, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine were increased in response to TA. Furthermore, TA suppressed mitochondrial membrane potential, reduced adenosine triphosphate production, and adversely affected B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, caspase-9, caspase-3, cytochrome c, cyclin A, cyclin-dependent kinases, ataxia-telangiectasia mutated, and P53 expression in a dose-dependent manner. We suggest that TA induces the mitochondrial pathway of apoptosis and S phase arrest in IPEC-J2 cells.


Assuntos
Enterócitos/efeitos dos fármacos , Taninos/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Enterócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fase S/efeitos dos fármacos , Suínos
3.
Sci Rep ; 7(1): 14689, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089626

RESUMO

Obesity, which is associated with dietary habits, has become a global social problem and causes many metabolic diseases. In China, both percentages of adult obesity and overweight are far lower compared to western countries. It was designed to increase the two levels of daily intake in human, namely 3.8% and 6.5%, which are recommendatory intake (25 g/d) and Chinese citizens' practical intake (41.4 g/d), respectively. The mice were respectively fed with feeds added with soybean oil, lard or the oil blended by both for 12 weeks. In the mice fed with diet containing 3.8% of the three oils or 6.5% blended oil, their body weight, body fat rate, cross-sectional area of adipocytes, adipogenesis and lipogenesis in adipose were decreased, whereas hydrolysis of triglyserides in adipose was increased. This study demonstrated that the oil mixture containing lard and soybean oil had a remarkable anti-obesity effect. It suggests that the traditional Chinese dietary habits using oils blended with lard and soybean oil, might be one of the factors of lower percentages of overweight and obesity in China, and that the increasing of dietary oil intake and the changing of its component resulted in the increasing of obesity rate in China over the past decades.


Assuntos
Adipócitos/fisiologia , Gorduras na Dieta/administração & dosagem , Comportamento Alimentar , Obesidade/dietoterapia , Óleo de Soja/administração & dosagem , Adulto , Animais , China , Culinária , Dietoterapia , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA