Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Wideochir Inne Tech Maloinwazyjne ; 19(2): 211-222, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38973786

RESUMO

Introduction: The aim of the article was too investigate and compare the feasibility, safety, and early postoperative recovery associated with laparoscopic partial splenectomy (LPS) and open partial splenectomy (OPS) in patients with benign splenic tumours and traumatic splenic rupture. Material and methods: A retrospective analysis was conducted on clinical data from 110 patients undergoing splenic resection at our hospital between March 2019 and May 2022. Among them, 35 patients underwent OPS, 25 underwent LPS for traumatic splenic rupture, while 50 patients with benign splenic tumours underwent either OPS (n = 20) or LPS (n = 30). Preoperative, intraoperative, and postoperative data were collected and compared. Statistical analysis was conducted using SPSS software. Results: There was no significant difference in the general data between the 2 groups of patients with benign splenic tumours and those with splenic trauma. Among patients with traumatic splenic rupture, the OPS group had a shorter operation time (p < 0.05). Regardless of whether they had traumatic splenic rupture or benign splenic tumours, the LPS group required less postoperative analgesia and had a shorter defecation recovery time (p < 0.05). Additionally, the LPS group displayed lower white blood cell count, white blood cell/lymphocyte ratio (WLR), neutrophil/lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), C-reactive protein (CRP), calcitonin (PCT), and interleukin-6 (IL-6) than the OPS group on the first and third days post-surgery (p < 0.05). Conclusions: In comparison to OPS, LPS presents significant advantages, including minimal surgical trauma, a reduced early postoperative inflammatory response, milder wound pain, and a faster recovery of gastrointestinal function.

2.
Environ Sci Pollut Res Int ; 31(37): 49498-49513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39078554

RESUMO

The issue of heavy metal pollution such as nickel poses a significant environmental concern, exerting detrimental effects on the growth and viability of plant life. Plants have various mechanisms to effectively manage heavy metal stress, including the ability to modify their amino acid type and content. This adaptive response allows plants to mitigate the detrimental effects caused by excessive heavy metal accumulation. The aim of this study was to investigate the effect of biofertilizers on nickel accumulation, nitrogen metabolism and amino acid profile of corn (Zea mays L.) cv. 'PL438' exposed to Ni stress. After disinfecting and soaking in water for 24 h, corn seeds were primed with bacterial biofertilizers (T2: NPK + FZ), fungal biofertilizers (T3: Arbuscular mycorrhizal fungi (AMF) + Trichoderma (T)), or a combination of them (T4: NPK + FZ + AMF + T) and were cultured by the hydroponic method in completely controlled conditions. Then, they were simultaneously exposed to nickel chloride at various rates (0, 75, or 150 µM) at the three-leaf stage. They were harvested two weeks later and were subjected to the measurement of Ni content, nitrate and nitrite content, nitrate reductase activity, and amino acid profile by high-performance liquid chromatography. The results showed that the application of Ni at higher rates increased Ni, nitrate, and nitrite contents and nitrate reductase activity. The study of Ni accumulation and TF revealed that Ni accumulated in the roots to a greater extent than in the shoots and TF was < 1 in all treatments. The shoot amino acid profile showed that the treatment of Ni+2 increased som amino acids such as aspartic acid, asparagine, serine, histidine, and glycine versus the control, whereas T4 Ni+2 increased aspartic acid, glutamic acid, threonine and arginine. The change in amino acids in Ni-treated plants may play a key role in their adaptation to Ni stress. The findings indicate that biofertilizers played a crucial role in mitigating the negative impacts of Ni on corn plants through alterations in amino acid composition and decreased absorption and translocation of Ni.


Assuntos
Aminoácidos , Fertilizantes , Níquel , Nitrogênio , Zea mays , Zea mays/metabolismo , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Micorrizas , Poluentes do Solo/metabolismo
3.
Acta Pharmacol Sin ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886550

RESUMO

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

4.
Plants (Basel) ; 13(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38794402

RESUMO

Corn (Zea mays L.) is an important annual grain that is cultivated as a food staple around the world. The current study examined the effect of wastewater and a combination of biological and organic fertilizers on the morphological and phytochemical traits of corn, using a factorial experiment based on a randomized complete block design with three replications. The first factor was biological and organic fertilizers at seven levels, including the control (no fertilization), bacterial biological fertilizers (NPK) along with iron and zinc Barvar biofertilizers, fungal biofertilizers made from Mycorrhiza and Trichoderma, biochar, a combination of bacterial and fungal biofertilizers, and a combination of bacterial and fungal biofertilizers with biochar. The second factor was irrigation at two levels (conventional irrigation and irrigation with wastewater). The traits studied included the morphological yield, phenols, flavonoids, polyphenols, glomalin, cadmium content in plant parts, and translocation factor (TF). The results disclosed that the best treatment in regard to the morphological traits was related to conventional water + biochar + mycorrhiza + Trichoderma + NPK. The highest phenol and flavonoid content were observed when biochar + mycorrhiza + Trichoderma + NPK treatments were used in both water treatments. Also, the wastewater + biochar + mycorrhiza + Trichoderma + NPK treatment demonstrated the highest total glomalin and phenylalanine ammonia-lyase (PAL) activity. The obtained results demonstrate that combined biological and organic fertilizer use on corn plants can effectively alleviate the deleterious effects of cadmium present in wastewater.

5.
Adv Food Nutr Res ; 108: 1-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38460996

RESUMO

Flavonoids are a class of polyphenols which are widely distributed in natural products and foods. They have diverse bioactivities, including anti-inflammatory, anti-aging, and antioxidant activities. Generally, the foods rich in flavonoids are usually consumed after thermal processing. However, thermal stability of flavonoids is usually low, and thermal processing could cause either positive or negative influences on their stability and bioactivities. In this review, the effects of thermal processing on thermal stability and bioactivity of dietary flavonoids from different food sources are summarized. Then, strategies to improve thermal stability of dietary flavonoids are discussed and the effect of some promising thermal technologies are also preliminary clarified. The promising thermal technologies may be alternative to conventional thermal processing technologies.


Assuntos
Flavonoides , Polifenóis , Polifenóis/farmacologia , Flavonoides/farmacologia , Alimentos , Antioxidantes/farmacologia , Manipulação de Alimentos
7.
Adv Food Nutr Res ; 107: 193-212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37898540

RESUMO

Olive (Olea europaea) is a native species from the Mediterranean region and widely cultivated for its edible fruit, known as olives. Olives are a rich source of monounsaturated fatty acids, vitamin E, and polyphenols, and have been shown to have various health benefits. They are commonly used for cooking and are also employed in cosmetics and the pharmaceutical industry. The extract obtained from olive fruits and several subproducts of the olive industry has demonstrated several biological activities mainly associated with their antioxidant and inflammatory properties. Thus, olives, olive-derived products, and subproducts of the olive industry have gained popularity in recent years due to their potential health benefits and their use in traditional medicine. The present chapter summarizes the main applications of Olea europaea and olive oil processing by-products as therapeutic agents against cancer, cardiovascular diseases, and antimicrobial agents.


Assuntos
Anti-Infecciosos , Olea , Azeite de Oliva/análise , Polifenóis , Frutas/química , Anti-Infecciosos/farmacologia
8.
Food Funct ; 14(20): 9083-9099, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37750182

RESUMO

Iron deficiency is a significant cause of iron deficiency anemia (IDA). Treatment of IDA is challenging due to several challenges, including low target bioavailability, low palatability, poor pharmacokinetics, and extended therapeutic regimes. Nanotechnology holds the promise of revolutionizing the management and treatment of IDA. Smart biogenic engineered nanomaterials (BENMs) such as lipids, protein, carbohydrates, and complex nanomaterials have been the subject of extensive research and opened new avenues for people and the planet due to their enhanced physicochemical, rheological, optoelectronic, thermomechanical, biological, magnetic, and nutritional properties. Additionally, they show eco-sustainability, low biotoxicity, active targeting, enhanced permeation and retention, and stimuli-responsive characteristics. We examine the opportunities offered by emerging smart BENMs for the treatment of iron deficiency anemia by utilizing iron-fortified smart foods. We review the progress made so far and other future directions to maximize the impact of smart nanofortification on the global population. The toxicity effects are also discussed with commercialization challenges.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Nanoestruturas , Humanos , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/prevenção & controle , Disponibilidade Biológica , Alimentos Fortificados
9.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615648

RESUMO

Asparagus species is recognized as a perennial herb with several valuable functional ingredients, and has been widely used as medicine and food since ancient times. Among its main chemical constituents, saponins play a vital role in the health benefits and biological activities including anti-cancer, antioxidant, immunomodulatory, anti-microbial, anti-inflammatory, and hypoglycemic. This review summarizes the preparation methods, structure and classification, biological functions, as well as the food and non-food applications of asparagus saponins, with a special emphasis on its anti-cancer effects in vitro and in vivo. Further, the main challenges and limitations of the current research trends in asparagus saponins are highlighted after a detailed analysis of the recent research information. This review bridges the gap between bioactive components and human health and aids current research on functional and health-promoting foods and medicinal application of Asparagus saponins.

10.
J Agric Food Chem ; 71(32): 12280-12288, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37551652

RESUMO

In this study, we investigated the inhibitory effects of three soybean isoflavones and two soybean phytosterols on the formation of 3-chloropropane-1,2-diol fatty acid esters (3-MCPDE) and aldehydes in heated soybean oil model. 0.4 mM of genistin, genistein, daidzein, stigmasterol, and ß-sitosterol significantly reduced 3-MCPDE formation by 25.7, 51.4, 21.4, 61.6, and 55.7%, and total aldehydes formation by 42.03, 43.94, 28.36, 54.74, and 39.23%, respectively. Further study showed that stigmasterol reduced the content of glycidyl esters (GEs) and glycidol, two key intermediates of 3-MCPDE, and prevented fatty acids degradation in the oils. Moreover, the effects of continuous frying time on the content of stigmasterol and the migration of stigmasterol were evaluated in the fried dough sticks model system. The content of stigmasterol in soybean oil was found to be significantly decreased with prolonged heating time. The concentrations of stigmasterol in fried dough sticks and the migration rates of stigmasterol from soybean oil to fried dough sticks decreased with repeated frying sessions. In addition, stigmasterol undergoes oxidative changes during heat treatment, and the oxidation products including 5,6α-epoxystigmasterol, 5,6ß-epoxystigmasterol, 7α-hydroxystigmasterol, 7ß-hydroxystigmasterol, stigmasterlol-3ß,5α,6ß-triol, and 7-ketostigmasterol were identified in the frying oils but not in the fried dough sticks. Overall, stigmasterol could be added to soybean oil to reduce 3-MCPDE and aldehydes formation, and reacting with GEs/glycidol and protection of lipid acids from oxidation may be the mechanism of action of stigmasterol.


Assuntos
Temperatura Alta , Óleo de Soja , Estigmasterol , Ácidos Graxos , Óleos , Aldeídos , Ésteres
11.
Crit Rev Food Sci Nutr ; : 1-27, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395263

RESUMO

Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.

12.
Crit Rev Food Sci Nutr ; : 1-19, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165485

RESUMO

Many bioactive compounds are reported from marine organisms, which are significantly different from those found in terrestrial organisms regarding their chemical structures and pharmacological activities. Marine glycoproteins (MGs) have aroused increasing attention as a good nutrient source owing to their potential applications in medicine, cosmetics and food. However, there is a lack of a comprehensive study on MGs to help readers understand the current state of research on marine-derived glycoproteins. The current review compiles the recent progress made on the structures and functions of MGs with future perspectives to maximize their value and applications via bibliometric analysis methods for the first time. The current research on MGs appears mostly limited to the laboratory, with no large-scale production of marine glycoproteins developed. The sugar chains are bound to proteins through covalent bonds that can readily be cleaved leading to difficultly in their separation and purification. Health effects attributed to MGs include treatment of inflammatory diseases, as well as anti-oxidant, immune modulation, anti-tumor, hypolipidemic, hypoglycemic, anti-bacterial and anti-freeze activities. This review can not only deepen the understanding of the functions of MGs, but also lay an important foundation for the further development and utilization of marine resources.


Overview on isolation, structural and functional properties of marine glycoproteins (MGs) via bibliometric analysis methods for the first time.Marine glycoproteins (MGs) have various biological activities and potential health applications.glycoproteins from marine organisms (MGs) significantly enhanced anti-oxidant and anti-inflammatory activities.

13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(4): 356-362, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37087552

RESUMO

Objective To explore the role of autophagy, apoptosis of neutrophils and neutrophils extracellular traps (NET) formation in systemic lupus erythematosus (SLE). Methods Thirty-six patients with SLE were recruited as research subjects, and 32 healthy controls matched accordingly were enrolled as control subjects. The expression levels of microtubule associated protein 1 light chain 3B (LC3B), autophagy-related gene5(ATG5), P62, B-cell lymphoma 2(Bcl2), Bcl2-related X protein (BAX) in neutrophils were detected by Western blot analysis. Flow cytometry was employed to analyze the expression of LC3B on neutrophils. The expression level of myeloperoxidase(MPO) in plasma was estimated by ELISA. Furthermore, neutrophils were cultured in vitro and stimulated by 100 nmol/L rapamycin and 10 µg/mL lipopolysaccharide (LPS) for 6 hours, respectively. And then, the expression levels of LC3B, ATG5, P62, Bcl2 and BAX in neutrophils were detected by Western blot analysis. The level of MPO in culture supernatant was detected by ELISA. The change of fluorescence intensity of NET in culture supernatant was assayed by SytoxTM Green staining combined with fluorescence spectrophotometry. Results Compared with healthy controls, the levels of autophagy and apoptosis of neutrophils and NET formation in SLE patients were increased. The level of apoptosis and NET formation was positively associated with neutrophil autophagy. The level of autophagy showed an increase but had no effect on apoptosis and NET formation for neutrophil stimulated by rapamycin. The levels of autophagy and NET formation also increased with no significant effect on apoptosis for neutrophil induced by LPS. Conclusion The autophagy, apoptosis and NET formation of neutrophils increase in SLE patients. The activation of autophagy and NET in neutrophils possibly result from the inflammatory internal environment in SLE patients.


Assuntos
Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Neutrófilos , Armadilhas Extracelulares/metabolismo , Lipopolissacarídeos/farmacologia , Proteína X Associada a bcl-2/metabolismo , Sirolimo/farmacologia , Autofagia
14.
Plants (Basel) ; 12(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903853

RESUMO

Citrus is an important genus in the Rutaceae family, with high medicinal and economic value, and includes important crops such as lemons, orange, grapefruits, limes, etc. The Citrus species is rich sources of carbohydrates, vitamins, dietary fibre, and phytochemicals, mainly including limonoids, flavonoids, terpenes, and carotenoids. Citrus essential oils (EOs) consist of several biologically active compounds mainly belonging to the monoterpenes and sesquiterpenes classes. These compounds have demonstrated several health-promoting properties such as antimicrobial, antioxidant, anti-inflammatory, and anti-cancer properties. Citrus EOs are obtained mainly from peels, but also from leaves and flowers, and are widely used as flavouring ingredients in food, cosmetics, and pharmaceutical products. This review focused on the composition and biological properties of the EOs of Citrus medica L. and Citrus clementina Hort. Ex Tan and their main constituents, limonene, γ-terpinene, myrcene, linalool, and sabinene. The potential applications in the food industry have been also described. All the articles available in English or with an abstract in English were extracted from different databases such as PubMed, SciFinder, Google Scholar, Web of Science, Scopus, and Science Direct.

15.
Nutrition ; 110: 111980, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965240

RESUMO

Patients with inflammatory bowel disease (IBD) are at substantially high risk for colorectal cancer (CRC). IBD-associated CRC accounts for roughly 10% to 15% of the annual mortality in patients with IBD. IBD-related CRC also affects younger patients compared with sporadic CRC, with a 5-y survival rate of 50%. Regardless of medical therapies, the persistent inflammatory state characterizing IBD raises the risk for precancerous changes and CRC, with additional input from several elements, including genetic and environmental risk factors, IBD-associated comorbidities, intestinal barrier dysfunction, and gut microbiota modifications. It is well known that nutritional habits and dietary bioactive compounds can influence IBD-associated inflammation, microbiome abundance and composition, oxidative stress balance, and gut permeability. Additionally, in recent years, results from broad epidemiologic and experimental studies have associated certain foods or nutritional patterns with the risk for colorectal neoplasia. The present study aimed to review the possible role of nutrition in preventing IBD-related CRC, focusing specifically on human studies. It emerges that nutritional interventions based on healthy, nutrient-dense dietary patterns characterized by a high intake of fiber, vegetables, fruit, ω-3 polyunsaturated fatty acids, and a low amount of animal proteins, processed foods, and alcohol, combined with probiotic supplementation have the potential of reducing IBD-activity and preventing the risk of IBD-related CRC through different mechanisms, suggesting that targeted nutritional interventions may represent a novel promising approach for the prevention and management of IBD-associated CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Humanos , Fatores de Risco , Doenças Inflamatórias Intestinais/complicações , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/complicações , Estado Nutricional
16.
J Agric Food Chem ; 71(8): 3599-3619, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802555

RESUMO

The prevalence of neurodegenerative, cerebrovascular, and psychiatric diseases and other neurological disorders has increased dramatically worldwide. Fucoxanthin is an algal pigment with many biological functions, and there is rising evidence that fucoxanthin plays a preventive and therapeutic role in neurological disorders. This review focuses on the metabolism, bioavailability, and blood-brain barrier penetration of fucoxanthin. Furthermore, the neuroprotective potential of fucoxanthin in neurodegenerative diseases, cerebrovascular diseases, and psychiatric diseases as well as other neurological disorders such as epilepsy, neuropathic pain, and brain tumors by acting on multiple targets will be summarized. The multiple targets include regulating apoptosis, reducing oxidative stress, activating the autophagy pathway, inhibiting Aß aggregation, improving dopamine secretion, reducing α-synuclein aggregation, attenuating neuroinflammation, modulating gut microbiota, and activating brain-derived neurotrophic factor, etc. Additionally, we look forward to brain-targeted oral transport systems due to the low bioavailability and blood-brain barrier permeability of fucoxanthin. We also propose exploring the systemic mechanisms of fucoxanthin metabolism and transport through the gut-brain process and envision new therapeutic targets for fucoxanthin to act on the central nervous system. Finally, we propose dietary fucoxanthin delivery interventions to achieve preventive effects on neurological disorders. This review provides a reference for the application of fucoxanthin in the neural field.


Assuntos
Doenças Neurodegenerativas , Xantofilas , Humanos , Apoptose , Encéfalo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Xantofilas/uso terapêutico , Xantofilas/farmacologia , Alimentos
17.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803106

RESUMO

Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.

18.
J Adv Res ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36639025

RESUMO

INTRODUCTION: Torreya grandis is a gymnosperm belonging to Taxodiaceae. As an economically important tree, its kernels are edible and rich in oil with high unsaturated fatty acids, such as sciadonic acid. However, the kernels from different T. grandis landraces exhibit fatty acid and oil content variations. OBJECTIVES: As a gymnosperm, does T. grandis have special regulation mechanisms for oil biosynthesis? The aim of this study was to dissect the genetic architecture of fatty acid and oil content and the underlying mechanism in T. grandis. METHODS: We constructed a high integrity reference sequence of expressed regions of the genome in T. grandis and performed transcriptome-referenced association study (TRAS) for 10 fatty acid and oil traits of kernels in the 170 diverse T. grandis landraces. To confirm the TRAS result, we performed functional validation and molecular biology experiments for oil significantly associated genes. RESULTS: We identified 41 SNPs from 34 transcripts significantly associated with 7 traits by TRAS (-log10 (P) greater than 6.0). Results showed that LOB domain-containing protein 40 (LBD40) and surfeit locus protein 1 (SURF1) may be indirectly involved in the regulation of oil and sciadonic acid biosynthesis, respectively. Moreover, overexpression of TgLBD40 significantly increased seed oil content. The nonsynonymous variant in the TgLBD40 coding region discovered by TRAS could alter the oil content in plants. Pearson's correlation analysis and dual-luciferase assay indicated that TgLBD40 positively enhanced oil accumulation by affecting oil biosynthesis pathway genes, such as TgDGAT1. CONCLUSION: Our study provides new insights into the genetic basis of oil biosynthesis in T. grandis and demonstrates that integrating RNA sequencing and TRAS is a powerful strategy to perform association study independent of a reference genome for dissecting important traits in T. grandis.

19.
Food Chem ; 409: 135295, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36603477

RESUMO

The current consumers' demand for food naturalness is urging the search for new functional foods of natural origin with enhanced health-promoting properties. In this sense, algae constitute an underexplored biological source of nutraceuticals that can be used to fortify food products. Both marine macroalgae (or seaweeds) and microalgae exhibit a myriad of chemical constituents with associated features as a result of their primary and secondary metabolism. Thus, primary metabolites, especially polysaccharides and phycobiliproteins, present interesting properties to improve the rheological and nutritional properties of food matrices, whereas secondary metabolites, such as polyphenols and xanthophylls, may provide interesting bioactivities, including antioxidant or cytotoxic effects. Due to the interest in algae as a source of nutraceuticals by the food and related industries, novel strategies should be undertaken to add value to their derived functional components. As a result, metabolomics is considered a high throughput technology to get insight into the full metabolic profile of biological samples, and it opens a wide perspective in the study of algae metabolism, whose knowledge is still little explored. This review focuses on algae metabolism and its applications in the food industry, paying attention to the promising metabolomic approaches to be developed aiming at the functional characterization of these organisms.


Assuntos
Suplementos Nutricionais , Alga Marinha , Alga Marinha/química , Alimento Funcional , Antioxidantes , Metabolômica
20.
Food Chem ; 410: 135434, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641911

RESUMO

Chloramphenicol (CAP) is a widely used antibiotic for the treatment of sick animals owing to its potent action and low cost. However, the accumulation of CAP in the human body can cause irreversible aplastic anemia and hematopoietic toxicity. Accordingly, development of various analytical techniques for the rapid detection of CAP in animal products and the related processed foods is necessary. Among these analytical techniques, electrochemical and optical sensors offer many advantages for CAP detection, including high sensitivity, simple operation and fast analysis speed. In this review, we summarize recent application of carbon nanomaterials, metal nanoparticles, metal oxide nanoparticles and metal organic framework in the development of electrochemical and optical sensors for CAP detection (2010-2022). Based on the advantages and disadvantages of nanomaterials, electrochemical and optical sensors are summarized in this review. The preparation and synthesis of electrochemical and optical sensors and nanomaterials in the field of rapid detection are prospected.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Humanos , Animais , Cloranfenicol/análise , Antibacterianos/análise , Alimentos , Técnicas Eletroquímicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA