Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Transl Autoimmun ; 5: 100162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36097634

RESUMO

Gasdermin D (GSDMD) and gasdermin E (GSDME) perpetuate inflammation by mediating the release of cytokines such as interleukin-1ß (IL-1ß) and IL-18. However, not only are the actions of GSDMD in colitis still controversial, but its interplay with GSDME in the pathogenesis of this disease has not been investigated. We sought to fill these knowledge gaps using the dextran sodium sulfate (DSS) experimental mouse colitis model. DSS ingestion by wild-type mice caused body weight loss as the result of severe gut inflammation, outcomes that were significantly attenuated in Gsdmd -/- or Gsdme -/- mice and nearly fully prevented in Gsdmd -/- ;Gsdme -/- animals. To assess the translational implications of these findings, we tested the efficacy of the active metabolite of US Food and Drug Administration (FDA)-approved disulfiram, which inhibits GSDMD and GSDME function. The severe DSS-induced gut toxicity was significantly decreased in mice treated with the inhibitor. Collectively, our findings indicate that disruption of the function of both GSDMD and GSDME is necessary to achieve maximal therapeutic effect in colitis.

2.
BMC Med Genomics ; 14(1): 264, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753502

RESUMO

Osteopetrosis is a genetically heterogenous, fatal bone disorder characterized by increased bone density. Globally, various genetic causes are reported for osteopetrosis with all forms of inheritance patterns. A precise molecular diagnosis is necessary for prognosis and for prescribing treatment paradigms in osteopetrosis. Here we report on thirteen individuals diagnosed with infantile malignant osteopetrosis coming from ten unrelated Pakistani families; nine of whom are consanguineous. We performed whole exome sequencing and Sanger sequencing in all families and identified homozygous variants in genes previously reported for autosomal recessive inheritance of osteopetrosis. All the identified variants are expected to affect the stability or length of gene products except one nonsynonymous missense variant. TCIRG1 was found as a candidate causal gene in majority of the families. We report six novel variants; four in TCIRG1 and one each in CLCN7 and OSTM1. Our combined findings will be helpful in molecular diagnosis and genetic counselling of patients with osteopetrosis particularly in populations with high consanguinity.


Assuntos
Osteopetrose/genética , Canais de Cloreto/genética , Feminino , Homozigoto , Humanos , Masculino , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Paquistão , Linhagem , Ubiquitina-Proteína Ligases/genética , ATPases Vacuolares Próton-Translocadoras/genética , Sequenciamento do Exoma
3.
PLoS Biol ; 18(8): e3000807, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760056

RESUMO

Radiotherapy is a commonly used conditioning regimen for bone marrow transplantation (BMT). Cytotoxicity limits the use of this life-saving therapy, but the underlying mechanisms remain poorly defined. Here, we use the syngeneic mouse BMT model to test the hypothesis that lethal radiation damages tissues, thereby unleashing signals that indiscriminately activate the inflammasome pathways in host and transplanted cells. We find that a clinically relevant high dose of radiation causes severe damage to bones and the spleen through mechanisms involving the NLRP3 and AIM2 inflammasomes but not the NLRC4 inflammasome. Downstream, we demonstrate that gasdermin D (GSDMD), the common effector of the inflammasomes, is also activated by radiation. Remarkably, protection against the injury induced by deadly ionizing radiation occurs only when NLRP3, AIM2, or GSDMD is lost simultaneously in both the donor and host cell compartments. Thus, this study reveals a continuum of the actions of lethal radiation relayed by the inflammasome-GSDMD axis, initially affecting recipient cells and ultimately harming transplanted cells as they grow in the severely injured and toxic environment. This study also suggests that therapeutic targeting of inflammasome-GSDMD signaling has the potential to prevent the collateral effects of intense radiation regimens.


Assuntos
Células da Medula Óssea/efeitos da radiação , Transplante de Medula Óssea , Proteínas de Ligação a DNA/genética , Inflamassomos/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Ligação a Fosfato/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proteínas de Ligação a DNA/deficiência , Feminino , Fêmur/citologia , Fêmur/metabolismo , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteínas de Ligação a Fosfato/deficiência , Piroptose/genética , Piroptose/efeitos da radiação , Transdução de Sinais , Baço/metabolismo , Baço/patologia , Baço/efeitos da radiação , Transplante Isogênico , Irradiação Corporal Total , Raios X
4.
J Bone Miner Res ; 35(4): 776-788, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31793068

RESUMO

Induction of nuclear factor of activated T cell cytoplasmic 1 (NFATc1) by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) is essential for macrophage differentiation into osteoclasts (OCs), but the underlying mechanisms remain unclear. The ability of poly(ADP-ribose) polymerase 1 (PARP1) to poly-ADP-ribosylate NFATc1 in T cells prompted us to investigate the PARP1 and NFATc1 interaction during osteoclastogenesis. However, extensive studies failed to directly link PARP1 to NFATc1. A combination of transcriptomics and proteomics studies was then used to identify PARP1 targets under these conditions. These unbiased approaches in conjunction with site-directed mutagenesis studies revealed that PARP1 inhibited NFATc1 expression and OC formation by ADP-ribosylating histone H2B at serine 7 and decreasing the occupancy of this histone variant at the NFATc1 promoter. The anti-osteoclastogenic function of PARP1 was confirmed in vivo in several mouse models of PARP1 loss-of-function or gain-of-function, including a novel model in which PARP1 was conditionally ablated in myeloid cells. Thus, PARP1 ADP-ribosylates H2B to negatively regulate NFATc1 expression and OC differentiation. © 2019 American Society for Bone and Mineral Research.


Assuntos
Histonas , Osteoclastos , Animais , Diferenciação Celular , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFI , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Linfócitos T/metabolismo
5.
PLoS Biol ; 16(11): e3000047, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30388107

RESUMO

Mutated NLRP3 assembles a hyperactive inflammasome, which causes excessive secretion of interleukin (IL)-1ß and IL-18 and, ultimately, a spectrum of autoinflammatory disorders known as cryopyrinopathies of which neonatal-onset multisystem inflammatory disease (NOMID) is the most severe phenotype. NOMID mice phenocopy several features of the human disease as they develop severe systemic inflammation driven by IL-1ß and IL-18 overproduction associated with damage to multiple organs, including spleen, skin, liver, and skeleton. Secretion of IL-1ß and IL-18 requires gasdermin D (GSDMD), which-upon activation by the inflammasomes-translocates to the plasma membrane where it forms pores through which these cytokines are released. However, excessive pore formation resulting from sustained activation of GSDMD compromises membrane integrity and ultimately causes a pro-inflammatory form of cell death, termed pyroptosis. In this study, we first established a strong correlation between NLRP3 inflammasome activation and GSDMD processing and pyroptosis in vitro. Next, we used NOMID mice to determine the extent to which GSDMD-driven pyroptosis influences the pathogenesis of this disorder. Remarkably, all NOMID-associated inflammatory symptoms are prevented upon ablation of GSDMD. Thus, GSDMD-dependent actions are required for the pathogenesis of NOMID in mice.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Síndromes Periódicas Associadas à Criopirina/metabolismo , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/metabolismo , Membrana Celular/metabolismo , Síndromes Periódicas Associadas à Criopirina/genética , Síndromes Periódicas Associadas à Criopirina/fisiopatologia , Inflamassomos/metabolismo , Inflamação , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Ligação a Fosfato , Piroptose/fisiologia
6.
J Am Soc Nephrol ; 29(8): 2110-2122, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30002222

RESUMO

BACKGROUND: We previously reported that mutations in the anillin (ANLN) gene cause familial forms of FSGS. ANLN is an F-actin binding protein that modulates podocyte cell motility and interacts with the phosphoinositide 3-kinase (PI3K) pathway through the slit diaphragm adaptor protein CD2-associated protein (CD2AP). However, it is unclear how the ANLN mutations cause the FSGS phenotype. We hypothesized that the R431C mutation exerts its pathogenic effects by uncoupling ANLN from CD2AP. METHODS: We conducted in vivo complementation assays in zebrafish to determine the effect of the previously identified missense ANLN variants, ANLNR431C and ANLNG618C during development. We also performed in vitro functional assays using human podocyte cell lines stably expressing wild-type ANLN (ANLNWT ) or ANLNR431C . RESULTS: Experiments in anln-deficient zebrafish embryos showed a loss-of-function effect for each ANLN variant. In human podocyte lines, expression of ANLNR431C increased cell migration, proliferation, and apoptosis. Biochemical characterization of ANLNR431C -expressing podocytes revealed hyperactivation of the PI3K/AKT/mTOR/p70S6K/Rac1 signaling axis and activation of mTOR-driven endoplasmic reticulum stress in ANLNR431C -expressing podocytes. Inhibition of mTOR, GSK-3ß, Rac1, or calcineurin ameliorated the effects of ANLNR431C . Additionally, inhibition of the calcineurin/NFAT pathway reduced the expression of endogenous ANLN and mTOR. CONCLUSIONS: The ANLNR431C mutation causes multiple derangements in podocyte function through hyperactivation of PI3K/AKT/mTOR/p70S6K/Rac1 signaling. Our findings suggest that the benefits of calcineurin inhibition in FSGS may be due, in part, to the suppression of ANLN and mTOR. Moreover, these studies illustrate that rational therapeutic targets for familial FSGS can be identified through biochemical characterization of dysregulated podocyte phenotypes.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/genética , Movimento Celular/genética , Células Cultivadas , Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Humanos , Mutação de Sentido Incorreto , Podócitos/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais , Peixe-Zebra , Proteínas rac1 de Ligação ao GTP/genética
7.
Sci Rep ; 7(1): 6630, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747793

RESUMO

The NLRP3 inflammasome senses a variety of signals referred to as danger associated molecular patterns (DAMPs), including those triggered by crystalline particulates or degradation products of extracellular matrix. Since some DAMPs confer tissue-specific activation of the inflammasomes, we tested the hypothesis that bone matrix components function as DAMPs for the NLRP3 inflammasome and regulate osteoclast differentiation. Indeed, bone particles cause exuberant osteoclastogenesis in the presence of RANKL, a response that correlates with NLRP3 abundance and the state of inflammasome activation. To determine the relevance of these findings to bone homeostasis, we studied the impact of Nlrp3 deficiency on bone using pre-clinical mouse models of high bone turnover, including estrogen deficiency and sustained exposure to parathyroid hormone or RANKL. Despite comparable baseline indices of bone mass, bone loss caused by hormonal or RANKL perturbations is significantly reduced in Nlrp3 deficient than in wild type mice. Consistent with the notion that osteolysis releases DAMPs from bone matrix, pharmacologic inhibition of bone resorption by zoledronate attenuates inflammasome activation in mice. Thus, signals originating from bone matrix activate the NLRP3 inflammasome in the osteoclast lineage, and may represent a bone-restricted positive feedback mechanism that amplifies bone resorption in pathologic conditions of accelerated bone turnover.


Assuntos
Matriz Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Inflamassomos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Estrogênios/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Hormônio Paratireóideo/metabolismo , Ligante RANK/metabolismo
8.
Sci Rep ; 7(1): 4880, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687790

RESUMO

Skeletal complications are common features of neonatal-onset multisystem inflammatory disease (NOMID), a disorder caused by NLRP3-activating mutations. NOMID mice in which NLRP3 is activated globally exhibit several characteristics of the human disease, including systemic inflammation and cartilage dysplasia, but the mechanisms of skeletal manifestations remain unknown. In this study, we find that activation of NLRP3 in myeloid cells, but not mesenchymal cells triggers chronic inflammation, which ultimately, causes growth plate and epiphyseal dysplasia in mice. These responses are IL-1 signaling-dependent, but independent of PARP1, which also functions downstream of NLRP3 and regulates skeletal homeostasis. Mechanistically, inflammation causes severe anemia and hypoxia in the bone environment, yet down-regulates the HIF-1α pathway in chondrocytes, thereby promoting the demise of these cells. Thus, activation of NLRP3 in hematopoietic cells initiates IL-1ß-driven paracrine cascades, which promote abnormal growth plate development in NOMID mice.


Assuntos
Síndromes Periódicas Associadas à Criopirina/patologia , Lâmina de Crescimento/patologia , Inflamassomos/metabolismo , Inflamação/fisiopatologia , Células Mieloides/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Condrócitos/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-1/metabolismo , Camundongos , Transdução de Sinais
9.
Mol Genet Genomics ; 289(5): 755-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24737421

RESUMO

Rare copy number variations (CNVs) generated by human genomic rearrangements have been shown to play an important role in pathogenesis of human diseases and cancers. CNV breakpoint analysis can help define genomic location, genetic content and sequence structure of pathogenic CNVs. This process is vital to elucidate CNV mutational mechanism and etiology of CNV-associated disorders. However, it is technically challenging to map CNV breakpoints at base-pair level, especially in the genomic regions with sequence complexity. In this study, we developed a new method of capture and breakpoint approaching sequencing (CBAS) to efficiently obtain CNV breakpoint sequences. This strategy is independent of CNV structures and applicable to various CNV types. As was demonstrated in CNV-associated patients with neurological disorders, CBAS achieved fine mapping of breakpoint sequences for compound deletion, complex duplication, and translocation. Intriguingly, CBAS also revealed unexpected CNV complexity involving long-range DNA rearrangement. Our observations showed that CBAS is an efficient method for obtaining CNV breakpoint sequence and mapping insertional events as well. This method can facilitate the researches on CNV-associated human diseases and cancers. CBAS is also applicable to mapping the integration sites of retrovirus (such as HIV) and transgenes in model organisms.


Assuntos
Pontos de Quebra do Cromossomo , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Sequência de Bases , Cromossomos Humanos X/genética , Hibridização Genômica Comparativa , Duplicação Gênica , Rearranjo Gênico , Humanos , Deficiência Intelectual/genética , Proteína Proteolipídica de Mielina/genética , Doença de Parkinson/genética , Doença de Pelizaeus-Merzbacher/genética , Deleção de Sequência , Ubiquitina-Proteína Ligases/genética
10.
Di Yi Jun Yi Da Xue Xue Bao ; 25(5): 599-600, 2005 May.
Artigo em Chinês | MEDLINE | ID: mdl-15897151

RESUMO

OBJECTIVE: To evaluate the effect of anastomosis of the cecum and anus preserving the ileocecal valve through the rectal muscular cuff in the treatment of benign colorectal diseases. METHODS: Eight cases including 5 ulcerative colitis and 3 familial adenomatous polyposis treated with this surgical procedure between 1990 to 2000 were retrospectively reviewed. RESULTS: During the 5 to 10 years of follow-up, no relapse, wound infection or anal fistula occurred in these patients, who had normal urination and sexual functions. The bowel movements decreased to 3 to 5 times a day within 8 to 10 weeks after the operation, and recovered to normal status (1 to 3 times a day) in 3-4 months. CONCLUSION: This surgical procedure could produce clinically satisfactory result in the cases of ulcerative colitis and familial adenomatous polyposis.


Assuntos
Polipose Adenomatosa do Colo/cirurgia , Canal Anal/cirurgia , Ceco/cirurgia , Colite Ulcerativa/cirurgia , Proctocolectomia Restauradora/métodos , Adulto , Anastomose Cirúrgica , Colo/cirurgia , Feminino , Humanos , Valva Ileocecal , Masculino , Pessoa de Meia-Idade
12.
Di Yi Jun Yi Da Xue Xue Bao ; 23(4): 382-3, 386, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12697484

RESUMO

OBJECTIVE: To compare the clinical effect of anal cushion resection with Milligan-Morgan hemorrhoidectomy for the third- or fourth-degree circular hemorrhoids. METHODS: Forty-eight patients with third- or fourth-degree circular hemorrhoids were randomly assigned into two groups to receive either anal cushion resection or Milligan-Morgan hemorrhoidectomy. Comparison of the two approaches were conducted in terms of postoperative pain scores, operation time, wound healing time, mean hospital stay, incidence of postoperative complications and the curative effect. Results No significant difference was found in view of postoperative pain scores according to visual analogue scale between the 2 groups. The operative time of anal cushion resection was significantly longer than that of the other group, however, its wound healing time, mean hospital stay and incidence of postoperative complications were significantly less. Follow-up study for 3 months after operation found that anal cushion resection had significantly better curative effect than Milligan-Morgan hemorrhoidectomy. Conclusion Anal cushion resection is a safe and practical approach for third- or fourth-degree circular hemorrhoids.


Assuntos
Canal Anal/cirurgia , Cirurgia Geral/métodos , Hemorroidas/cirurgia , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor Pós-Operatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA