Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(11): 2938-2941, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824297

RESUMO

We present enhanced sensing of a radio frequency (RF) electric field (E-field) by the combined polarizability of Rydberg atoms and the optimized local oscillator (LO) field of a superheterodyne receiver. Our modified theoretical model reveals the dependencies of the sensitivity of E-field amplitude measurement on the polarizability of Rydberg states and the strength of the LO field. The enhanced sensitivities of the megahertz (MHz) E-field are demonstrated at the optimal LO field for three different Rydberg states ${\rm 43D}_{5/2}$, ${\rm 60S}_{1/2}$, and ${\rm 90S}_{1/2}$. The sensitivity of 63 MHz for the ${\rm 90S}_{1/2}$ state reaches 9.6 $\times 10^{-5}\rm \,V/m/\sqrt {Hz}$, which is approximately an order of magnitude higher than those already published. This result closely approaches the sensitivity limit of a 1 cm passive dipole antenna without using an impedance matching network. This atomic sensor based on the Rydberg Stark effect with heterodyne technique is expected to boost an alternative solution to electric dipole antennas.

2.
ACS Nano ; 17(9): 8433-8441, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102436

RESUMO

Specific metabolic aberrations of cancer cells rapidly generate energy with a minuscule but detectable temperature variation, which is a typical characteristic providing insight into cancer pathogenesis. However, to date, intracellular temperature mapping of cancer cell metabolism with high temporal and spatial resolution has not been realized. In this study, we mapped and monitored in real-time the intracellular temperature variations of mitochondria and cytoplasm at a subcellular scale via a single-molecule coherent modulation microscopy coupling targeted molecule labeling technique. According to the variation of the decoherence processes of targeted molecules as a function of intracellular temperature, we achieved a high temperature resolution (<0.1 K) and proved that this technique could eliminate interference from fluorescence intensity disturbance and external pH change. Furthermore, we showed a positive correlation between the determined temperature and the adenosine triphosphate production rate of mitochondrial metabolism in combination with a cell energy metabolic analyzer. This technology enables accurate real-time temporal and spatial visualization of cancer metabolism and establishes diagnoses and therapies for cancer.


Assuntos
Microscopia , Neoplasias , Termografia , Citoplasma , Mitocôndrias , Imagem Individual de Molécula/métodos , Neoplasias/diagnóstico por imagem
3.
Light Sci Appl ; 11(1): 13, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996893

RESUMO

Synthetic gauge fields in synthetic dimensions are now of great interest. This concept provides a convenient manner for exploring topological phases of matter. Here, we report on the first experimental realization of an atom-optically synthetic gauge field based on the synthetic momentum-state lattice of a Bose gas of 133Cs atoms, where magnetically controlled Feshbach resonance is used to tune the interacting lattice into noninteracting regime. Specifically, we engineer a noninteracting one-dimensional lattice into a two-leg ladder with tunable synthetic gauge fields. We observe the flux-dependent populations of atoms and measure the gauge field-induced chiral currents in the two legs. We also show that an inhomogeneous gauge field could control the atomic transport in the ladder. Our results lay the groundwork for using a clean noninteracting synthetic momentum-state lattice to study the gauge field-induced topological physics.

4.
Nanoscale ; 13(19): 8966-8975, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33970179

RESUMO

Monolayer transition metal dichalcogenides, manifesting strong spin-orbit coupling combined with broken inversion symmetry, lead to coupling of spin and valley degrees of freedom. These unique features make them highly interesting for potential spintronic and valleytronic applications. However, engineering spin-orbit coupling at room temperature as demanded after device fabrication is still a great challenge for their practical applications. Here we reversibly engineer the spin-orbit coupling of monolayer MoS2 by laser irradiation under controlled gas environments, where the spin-orbit splitting has been effectively regulated within 140 meV to 200 meV. Furthermore, the photoluminescence intensity of the B exciton can be reversibly manipulated over 2 orders of magnitude. We attribute the engineering of spin-orbit splitting to the reduction of binding energy combined with band renormalization, originating from the enhanced absorption coefficient of monolayer MoS2 under inert gases and subsequently the significantly boosted carrier concentrations. Reflectance contrast spectra during the engineering stages provide unambiguous proof to support our interpretation. Our approach offers a new avenue to actively control the spin-orbit splitting in transition metal dichalcogenide materials at room temperature and paves the way for designing innovative spintronic devices.

5.
Opt Express ; 27(4): A224-A234, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876138

RESUMO

A ppb-level photoacoustic multicomponent gas sensor system for sulfur hexafluoride (SF6) decomposition detection was developed by the use of two near-infrared (NIR) diode lasers and an ultraviolet (UV) solid-state laser. A telecommunication fiber amplifier module was used to boost up the excitation optical power from the two NIR lasers. A dual-channel high-Q photoacoustic cell (PAC) was designed for the simultaneous detection of CO, H2S, and SO2 in SF6 buffer gas by means of a time division multiplexing (TDM) method. Feasibility and performance of the multicomponent sensor was evaluated, resulting in minimum detection limits of 435 ppbv, 89 ppbv, and 115 ppbv for CO, H2S, and SO2 detection at atmospheric pressure.

6.
Nat Commun ; 8: 15331, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561065

RESUMO

Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely.

7.
Opt Express ; 16(20): 15870-9, 2008 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-18825223

RESUMO

We theoretically investigated the properties of the effective four-level stimulated Raman adiabatic passage scheme in a cold gas of Cs atoms and molecules, where exists the tunnelling coupling between two excited molecular states due to the 0(g)- (6S,6P(3/2)) double well structure. The double dark resonance is predicted in the absorption spectrum when the tunnelling coupling strength is large enough. The double dark resonance not only reveals the formation of the ultra-cold molecules, but also provides further evidence for the tunnelling as one effective coupling mechanism between the two excited molecular states. The effect of the various experimental conditions on this phenomena has been discussed.


Assuntos
Césio/química , Óptica e Fotônica , Absorção , Temperatura Baixa , Gases , Íons , Lasers , Modelos Estatísticos , Teoria Quântica , Espalhamento de Radiação , Análise Espectral Raman , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA