Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 101(11): 102113, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087443

RESUMO

This study's objective was to investigate the effects of dietary Se (in the form of selenomethionine) on the antioxidant activity and selenoprotein gene expressions in layer breeder roosters. One hundred and eighty, 36-wk-old Jingfen layer breeder roosters were randomly allocated to one of 5 dietary treatments (0, 0.25, 0.5, 1, or 2 mg/kg Se) for 6 wk on a corn-soybean meal-based diet. Antioxidant parameters and selenoprotein gene expressions were assessed at the end of the experiment. The results showed that Se supplementation significantly increased the activity of T-SOD, CAT, GSH-Px, and superoxide anion scavenging ability in plasma (P ≤ 0.05), and activities of T-SOD, CAT, GSH-Px, superoxide anion scavenging ability, and hydroxyl radical scavenging ability in the liver, kidney, and testis (P < 0.05). Moreover, MDA levels were significantly reduced in plasma, liver, kidney, and testis (P < 0.01), compared to the control group. Furthermore, the dietary administration of Se significantly increased TrxR2 and GPx4 mRNA levels in kidney and testis, and ID1 mRNA levels in liver and kidney. Most of the antioxidant parameters and selenoprotein-related gene expressions significantly increased, and MDA significantly decreased at dietary supplementation with 0.5 mg/kg Se. Whereas a higher dose of Se level (1 or 2 mg/kg) inhibited the activities of some of the antioxidant enzymes and selenoprotein-related gene expressions in selected tissues. In conclusion, dietary Se supplementation with 0.5 mg/kg significantly improved roosters' antioxidant status and selenoprotein-related gene expression in liver, kidney, and testis, while higher doses led to inhibit these; dietary Se might increase reproductive performance by enhancing their antioxidant status in roosters.


Assuntos
Selênio , Selenometionina , Animais , Masculino , Selenometionina/metabolismo , Antioxidantes/metabolismo , Galinhas/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Superóxidos/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Dieta/veterinária , RNA Mensageiro/metabolismo , Expressão Gênica , Superóxido Dismutase/metabolismo , Selênio/metabolismo
2.
Gen Comp Endocrinol ; 286: 113135, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849411

RESUMO

Some of the functions of melatonin in mammals are exerted through its membrane receptors (MRs) and studies have shown that estradiol (E2) might play an important role in regulating the expression of these proteins in female reproductive organs. However, no reports have reported the expression of MRs in the sheep oviduct or whether they are regulated by E2. Thus, herein, we detected the localization of MT1 and MT2 in the sheep oviduct. Moreover, we also investigated the expression pattern of these markers in the ovulating and non-ovulating side of the oviduct in the sheep ampulla and isthmus. Immunohistochemistry analyses revealed that both MT1 and MT2 are mainly expressed on oviduct epithelial cells. Both real-time polymerase chain reaction (qPCR) and western blot analyses showed that MT1 and MT2 genes and proteins are highly expressed on the non-ovulating side of the oviduct ampulla, but not the ovulating side. However, regarding the oviduct isthmus, there were no significant differences between the ovulating and non-ovulating sides. In vitro, 10 ng/ml and 1 µg/ml of E2, as well as 1 µg/ml of E2 combined with 0.1 µg/ml, 1 µg/ml, and 10 µg/ml of ICI182780 (a non-selective estrogenreceptor antagonist), were used to treat oviduct epithelial cells. We found that E2 inhibited the expression of MT1 and MT2 in cultured oviduct cells. Moreover, the inhibitory effect was suppressed by ICI182780. In conclusion, it was demonstrated that MRs are present in the sheep oviduct, and that E2, via the ER pathway, regulates their expression in the oviduct.


Assuntos
Oviductos/metabolismo , Receptores de Melatonina/metabolismo , Animais , Feminino , Humanos , Ovinos
3.
Immunol Lett ; 214: 45-51, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31491433

RESUMO

Melatonin has protective effects against inflammation but its role in epididymitis is unknown. We addressed this in the present study using lipopolysaccharide (LPS)-stimulated sheep epididymal epithelial cells as an in vitro inflammation model. We found that interleukin (IL)-1ß, IL-6, tumor necrosis factor α, and cyclooxygenase (COX)-2 mRNA levels; COX-2 and Toll-like receptor (TLR)-4 protein levels; and nuclear factor (NF)-κB p65 phosphorylation were increased by LPS treatment. These effects were reversed in a dose-dependent manner by melatonin (10-11-10-7 M). Quantitative reverse transcription PCR and immunofluorescence analyses showed that the melatonin receptors MT1 and MT2 were expressed in sheep epididymal epithelial cells. The inhibitory effect of melatonin on inflammation was abrogated by the MT1 and MT2 receptor antagonist luzindole and the MT2 ligand 4-phenyl-2-propanamide tetraldehyde. Thus, melatonin exerted anti-inflammatory effect in epididymal epithelial cells by inhibiting TLR4/NF-κB signaling, suggesting its potential as an effective drug for the treatment of epididymitis in sheep.


Assuntos
Epididimite/prevenção & controle , Células Epiteliais/imunologia , Lipopolissacarídeos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Citocinas/imunologia , Epididimo/imunologia , Epididimo/patologia , Epididimite/induzido quimicamente , Epididimite/imunologia , Epididimite/patologia , Células Epiteliais/patologia , Masculino , Receptor MT1 de Melatonina/imunologia , Receptor MT2 de Melatonina/imunologia , Ovinos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Transcrição RelA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA