Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Burns ; 44(8): 2042-2050, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30139538

RESUMO

Smoke inhalation injury (SII) is an independent risk factor for morbidity and mortality in patients with severe burns, however, the underlying mechanisms of SII are still not fully understood. In our study, we established an advanced rat model of SII based on the previous work, and explored the dynamic changes of pathophysiology and inflammatory factors during 28days post SII. We also measured the different expressions of miRNAs in bronchoalveolar lavage fluid (BALF) between SII and normal control rats by miRNA microarray. At 1day after smoke inhalation, the histopathological results exhibited inflammatory exudates in the lung tissue with significant edema. As time went on, the lung injuries gradually appeared at alveolar septum thickening and alveolar collapse, which suggested that it further induced damage to lung parenchyma by smoke inhalation. Particularly, the collagen deposition indicating pulmonary fibrosis happened at 28days post-injury. Plasma IL-6 and TNF-a were significantly increased after 1day of smoke inhalation. Plasma IL-10, BALF TNF-α and IL-10 were significantly increased after 2days of smoke inhalation. By extending the observation time, the levels of plasma IL-6, BALF TNF-a and IL-10 appeared a second peak again after 14days of injury. Compared with the normal control group, there were 23 upregulated miRNAs and 2 downregulated miRNAs in BALF of SII group at 1day post-injury. RT-qPCR validation assay confirmed that the changes of miR-34c-5p, miR-92b-3p, miR-205, miR-34b-3p, miR-92a-3p, let-7b-5p, let-7c-5p in BALF were consistent with the conclusion of the miRNA microarray. In summary, we showed the dynamic changes of pathologic changes and inflammatory factors in rats with SII, and a subset of seven miRNAs changed in BALF after SII which may be used for diagnosis and potential therapeutic targets.


Assuntos
Líquido da Lavagem Broncoalveolar/química , MicroRNAs/metabolismo , Lesão por Inalação de Fumaça/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-10/imunologia , Interleucina-6/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , MicroRNAs/imunologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Wistar , Lesão por Inalação de Fumaça/diagnóstico , Lesão por Inalação de Fumaça/imunologia , Lesão por Inalação de Fumaça/patologia , Fator de Necrose Tumoral alfa/imunologia
2.
Stem Cells Int ; 2016: 3970942, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610137

RESUMO

Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs after in vivo administration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time. Ex vivo organ imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA