Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(1): 110-117, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35300772

RESUMO

Objective To screen the potential key genes of osteosarcoma by bioinformatics methods and analyze their immune infiltration patterns. Methods The gene expression profiles GSE16088 and GSE12865 associated with osteosarcoma were obtained from the Gene Expression Omnibus(GEO),and the differentially expressed genes(DEGs)related to osteosarcoma were screened by bioinformatics tools.Gene Ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment,and analysis of immune cell infiltration were then carried out for the DEGs.The potential Hub genes of osteosarcoma were identified by protein-protein interaction network,and the expression of Hub genes in osteosarcoma and normal tissue samples was verified via the Cancer Genome Atlas(TCGA). Results A total of 108 DEGs were screened out.GO annotation and KEGG pathway enrichment revealed that the DEGs were mainly involved in integrin binding,extracellular matrix (ECM) structural components,ECM receptor interactions,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Macrophages were the predominant infiltrating immune cells in osteosarcoma.Secreted phosphoprotein 1(SPP1),matrix metallopeptidase 2(MMP2),lysyl oxidase(LOX),collagen type V alpha(II)chain(COL5A2),and melanoma cell adhesion molecule(MCAM)presented differential expression between osteosarcoma and normal tissue samples(all P<0.05). Conclusions SPP1,MMP2,LOX,COL5A2,and MCAM are all up-regulated in osteosarcoma,which may serve as potential biomarkers of osteosarcoma.Macrophages are the key infiltrating immune cells in osteosarcoma,which may provide new perspectives for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Macrófagos Associados a Tumor , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Osteossarcoma/genética , Osteossarcoma/imunologia , Fosfatidilinositol 3-Quinases/genética , Macrófagos Associados a Tumor/imunologia
2.
Orthop Surg ; 11(4): 679-689, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31385411

RESUMO

OBJECTIVE: To determine the safety and effectiveness of a cross-linked sodium hyaluronate (CHA) scaffold in cartilage repair. METHODS: Physicochemical properties of the scaffold were determined. The safety and effectiveness of the scaffold for cartilage repair were evaluated in a minipig model of a full-thickness cartilage defect with microfracture surgery. Postoperative observation and hematological examination were used to evaluate the safety of the CHA scaffold implantation. Pathological examination as well as biomechanical testing, including Young's modulus, stress relaxation time, and creep time, were conducted at 6 and 12 months postsurgery to assess the effectiveness of the scaffold for cartilage repair. Furthermore, type II collagen and glycosaminoglycan content were determined to confirm the influence of the scaffold in the damaged cartilage tissue. RESULTS: The results showed that the routine hematological indexes of the experimental animals were within the normal physiological ranges, which confirmed the safety of CHA scaffold implantation. Based on macroscopic observation, it was evident that repair of the defective cartilage in the animal knee joint began during the 6 months postoperation and was gradually enhanced from the central to the surrounding region. The repair smoothness and color of the 12-month cartilage samples from the operation area were better than those of the 6-month samples, and the results for the CHA scaffold implantation group were better than the control group. Greater cell degeneration and degeneration of the adjacent cartilage was found in the implantation group compared with the control group at both 6 and 12 months postoperation, evaluated by O'Driscoll Articular Cartilage Histology Scoring. Implantation with the CHA scaffold matrix promoted cartilage repair and improved its compression capacity. The type II collagen level in the CHA scaffold implantation group tended to be higher than that in the control group at 6 months (2.33 ± 1.50 vs 1.68 ± 0.56) and 12 months postsurgery (3.37 ± 1.70 vs 2.06 ± 0.63). The GAG content in the cartilage of the control group was significantly lower than that of the experimental group (2.17 ± 0.43 vs 3.64 ± 1.17, P = 0.002 at 6 months and 2.27 ± 0.38 vs 4.12 ± 1.02, P = 0.002 at 12 months). Type II collagen and glycosaminoglycan content also demonstrated that CHA was beneficial for the accumulation of both these vital substances in the cartilage tissue. CONCLUSIONS: The CHA scaffold displayed the ability to promote cartilage repair when applied in microfracture surgery, which makes it a promising material for application in the area of cartilage tissue engineering.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Fêmur/cirurgia , Ácido Hialurônico/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Colágeno Tipo II/metabolismo , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Suínos , Porco Miniatura
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 35(1): 108-11, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23472858

RESUMO

OBJECTIVE: To investigate the feasibility of hip arthroplasty in the treatment of elderly patients with Evans I-III intertrochanteric fracture of femur by analyzing its biomechanics characters. METHODS: We solved the CT digital image files with the graphics processing software Mimics at DICOM 3.0 standard, and reconstructed the three-dimensional entity of femur with CAD modeling software Unigraphics. Then the fracture line was defined in the model as the line between the tip of greater trochanter and inferior margin of small trochanter, above which the upper bone was removed. Afterwards the two prosthesises with different stem lengths (120 mm and 170 mm) were implanted into the fracture model respectively as hip arthroplasty with 3 mm bone cement layer between prosthesis and femur, and the bone defect was repatched with 5 mm bone cement layer. A three-dimensional finite element model was established with finite element analysis software ABAQUS 6.5. We formulated different material parameters under the stress condition standing with single leg to build the stress distribution map of the femur prosthesis, and took 5 loci of region of stress concentration to calculate the mean value of stress. RESULTS: The stress distribution maps of the short and long stem length prothesises were similar. And there were two areas of stress concentration, including the upper portion and the lower portion close to the joint of the prosthesis stem, and the stress concentration in the junction part was obviously between the lower portion and the upper area of the small trachanter. The stress reached the first concentration area at the junction and then gradually reached the second concentration area at the interior terminal of the stem. While the stress gradually increased along the lateral prosthesis stem, and reached the stress concentration area at the end. CONCLUSIONS: The stress distribution maps in the femur prosthesises are similar between hip arthroplasty in the treatment of intertrochanteric fracture of femur and the traditional hip arthroplasty surgery. The peak stress values are higher in the long stem prosthesis in the treatment of intertrochanteric fracture of femur than the short type, while they are under the rupture value of the metal.


Assuntos
Artroplastia de Quadril/instrumentação , Fraturas do Quadril/cirurgia , Prótese de Quadril , Idoso , Artroplastia de Quadril/métodos , Fenômenos Biomecânicos , Cimentos Ósseos , Simulação por Computador , Feminino , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Software , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA