Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(8): 168500, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401626

RESUMO

Programmed cell death 1 ligand 2 (PD-L2), a member of the B7 immune checkpoint protein family, emerges as a crucial player in immune modulation. Despite its functional overlap with programmed cell death 1 ligand 1 (PD-L1) in binding to the programmed cell death protein 1 (PD-1) on T cells, PD-L2 exhibits a divergent expression pattern and a higher affinity for PD-1. However, the regulatory mechanisms of PD-L2 remain under-explored. Here, our investigations illustrate the pivotal role of cholesterol in modulating PD-L2 stability. Using advanced nuclear magnetic resonance (NMR) and biochemical analyses, we demonstrate a direct and specific binding between cholesterol and PD-L2, mediated by an F-xxx-V-xx-LR motif in its transmembrane domain, distinct from that in PD-L1. This interaction stabilizes PD-L2 and prevents its downstream degradation. Disruption of this binding motif compromises PD-L2's cellular stability, underscoring its potential significance in cancer biology. These findings not only deepen our understanding of PD-L2 regulation in the context of tumors, but also open avenues for potential therapeutic interventions.


Assuntos
Colesterol , Proteína 2 Ligante de Morte Celular Programada 1 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Domínios Proteicos , Linfócitos T/metabolismo , Células HEK293 , Humanos , Estabilidade Proteica , Proteína 2 Ligante de Morte Celular Programada 1/química , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Colesterol/química , Colesterol/metabolismo
2.
Sci Adv ; 8(34): eabq4722, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36026448

RESUMO

Cholesterol, an essential molecule for cell structure, function, and viability, plays crucial roles in the development, progression, and survival of cancer cells. Earlier studies have shown that cholesterol-lowering drugs can inhibit the high expression of programmed-death ligand 1 (PD-L1) that contributes to immunoevasion in cancer cells. However, the regulatory mechanism of cell surface PD-L1 abundance by cholesterol is still controversial. Here, using nuclear magnetic resonance and biochemical techniques, we demonstrated that cholesterol can directly bind to the transmembrane domain of PD-L1 through two cholesterol-recognition amino acid consensus (CRAC) motifs, forming a sandwich-like architecture and stabilizing PD-L1 to prevent downstream degradation. Mutations at key binding residues prohibit PD-L1-cholesterol interactions, decreasing the cellular abundance of PD-L1. Our results reveal a unique regulatory mechanism that controls the stability of PD-L1 in cancer cells, providing an alternative method to overcome PD-L1-mediated immunoevasion in cancers.


Assuntos
Antígeno B7-H1 , Neoplasias , Colesterol , Humanos
3.
Polymers (Basel) ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893977

RESUMO

DHHC3 belongs to a family of DHHC palmitoyltransferase, which catalyzes the S-palmitoylation of target proteins by attaching a fatty acyl group to a cysteine. Recently, DHHC3 has been demonstrated to be a promising antitumor target in cancer therapeutics. However, the detailed structure and catalysis mechanism of DHHC3 remain elusive, considering its sequence diversity from the DHHC homologues with known crystal structures. Here, we described the expression and purification of human DHHC3 (hDHHC3) and truncated hDHHC3 with the flexible N-terminal domain (NTD) removed. Purified hDHHC3 proteins were used under various conditions for protein crystallization. LAMTOR1, one of the interacting proteins of hDHHC3 to facilitate the crystallization, was further identified by mass spectrometry and co-immunoprecipitation assay. The structural exploration using cryogenic electronic microscopy (cryo-EM) on the inactive hDHHS3 mutant showed a typical sideview of membrane proteins. These results provide a preliminary guidance for the structural determination of DHHC3.

4.
Nat Commun ; 12(1): 5106, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429434

RESUMO

The cytoplasmic domain of PD-L1 (PD-L1-CD) regulates PD-L1 degradation and stability through various mechanism, making it an attractive target for blocking PD-L1-related cancer signaling. Here, by using NMR and biochemical techniques we find that the membrane association of PD-L1-CD is mediated by electrostatic interactions between acidic phospholipids and basic residues in the N-terminal region. The absence of the acidic phospholipids and replacement of the basic residues with acidic residues abolish the membrane association. Moreover, the basic-to-acidic mutations also decrease the cellular abundance of PD-L1, implicating that the electrostatic interaction with the plasma membrane mediates the cellular levels of PD-L1. Interestingly, distinct from its reported function as an activator of AMPK in tumor cells, the type 2 diabetes drug metformin enhances the membrane dissociation of PD-L1-CD by disrupting the electrostatic interaction, thereby decreasing the cellular abundance of PD-L1. Collectively, our study reveals an unusual regulatory mechanism that controls the PD-L1 level in tumor cells, suggesting an alternative strategy to improve the efficacy of PD-L1-related immunotherapies.


Assuntos
Antígeno B7-H1/metabolismo , Membranas/metabolismo , Eletricidade Estática , Antígeno B7-H1/química , Antígeno B7-H1/genética , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2 , Células HEK293 , Humanos , Imunoterapia , Metformina , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA