Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(32): 29735-29745, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599957

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a prevalent global condition and a common precursor to liver cancer, yet there is currently no specific medication available for its treatment. Ginseng, renowned for its medicinal and dietary properties, has been utilized in NAFLD management, although the precise underlying mechanism remains elusive. To investigate the effectiveness of ginsenoside Rd, we employed mouse and cell models to induce NAFLD using high-fat diets, oleic acid, and palmitic acid. We explored and confirmed the specific mechanism of ginsenoside Rd-induced hepatic steatosis through experiments involving mice with a liver-specific knockout of SIRT6, a crucial protein involved in metabolic regulation. Our findings revealed that administration of ginsenoside Rd significantly reduced the inflammatory response, reactive oxygen species (ROS) levels, lipid peroxide levels, and mitochondrial stress induced by oleic acid and palmitic acid in primary hepatocytes, thereby mitigating excessive lipid accumulation. Moreover, ginsenoside Rd administration effectively enhanced the mRNA content of key proteins involved in fatty acid oxidation, with a particular emphasis on SIRT6 and its target proteins. We further validated that ginsenoside Rd directly binds to SIRT6, augmenting its deacetylase activity. Notably, we made a significant observation that the protective effect of ginsenoside Rd against hepatic disorders induced by a fatty diet was almost entirely reversed in mice with a liver-specific SIRT6 knockout. Our findings highlight the potential therapeutic impact of Ginsenoside Rd in NAFLD treatment by activating SIRT6. These results warrant further investigation into the development of Ginsenoside Rd as a promising agent for managing this prevalent liver disease.

2.
Cell Mol Gastroenterol Hepatol ; 14(2): 271-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35526796

RESUMO

BACKGROUND & AIMS: Excessive acetaminophen (APAP) intake causes oxidative stress and inflammation, leading to fatal hepatotoxicity; however, the mechanism remains unclear. This study aims to explore the protective effects and detailed mechanisms of sirtuin 6 (SIRT6) in the defense against APAP-induced hepatotoxicity. METHODS: Hepatocyte-specific SIRT6 knockout mice, farnesoid X receptor (FXR) knockout mice, and mice with genetic or pharmacological activation of SIRT6 were subjected to APAP to evaluate the critical role of SIRT6 in the pathogenesis of acute liver injury. RNA sequences were used to investigate molecular mechanisms underlying this process. RESULTS: Hepatic SIRT6 expression was substantially reduced in the patients and mice with acute liver injury. The deletion of SIRT6 in mice and mice primary hepatocytes led to high N-acetyl-p-benzo-quinoneimine and low glutathione levels in the liver, thereby enhancing APAP overdose-induced liver injury, manifested as increased hepatic centrilobular necrosis, oxidative stress, and inflammation. Conversely, overexpression or pharmacological activation of SIRT6 enhanced glutathione and decreased N-acetyl-p-benzo-quinoneimine, thus alleviating APAP-induced hepatotoxicity via normalization of liver damage, inflammatory infiltration, and oxidative stress. Our molecular analysis revealed that FXR is regulated by SIRT6, which is associated with the pathological progression of ALI. Mechanistically, SIRT6 deacetylates FXR and elevates FXR transcriptional activity. FXR ablation in mice and mice primary hepatocytes prominently blunted SIRT6 overexpression and activation-mediated ameliorative effects. Conversely, pharmacological activation of FXR mitigated APAP-induced hepatotoxicity in SIRT6 knockout mice. CONCLUSIONS: Our current study suggests that SIRT6 plays a crucial role in APAP-induced hepatotoxicity, and pharmacological activation of SIRT6 may represent a novel therapeutic strategy for APAP overdose-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Receptores Citoplasmáticos e Nucleares , Sirtuínas , Acetaminofen/toxicidade , Animais , Glutationa/metabolismo , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/genética , Sirtuínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA