Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 278: 126496, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996563

RESUMO

Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.


Assuntos
Carbono , Dopamina , Técnicas Eletroquímicas , Nanocompostos , Nanofios , Platina , Dopamina/análise , Dopamina/sangue , Dopamina/química , Platina/química , Células PC12 , Nanofios/química , Nanocompostos/química , Animais , Carbono/química , Ratos , Porosidade , Técnicas Eletroquímicas/métodos , Neurônios/metabolismo , Limite de Detecção , Eletrodos
2.
Bioelectrochemistry ; 159: 108753, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38833812

RESUMO

MiR-1246 in breast cancer-derived exosomes was a promising biomarker for early diagnosis of breast cancer(BC). However, the low abundance, high homology and complex background interference make the accurate quantitative detection of miR-1246 facing great challenges. In this study, we developed an electrochemical biosensor based on the subtly combined of CRISPR/Cas12a, double-stranded specific nuclease(DSN) and magnetic nanoparticles(MNPs) for the detection of miR-1246 in BC-derived exosomes. Ascribed to the good synergistic effect of DSN, Cas12a and MNPs, the developed electrochemical biosensor exhibited excellent performance with the linear range from 500 aM to 5 pM, and the detection limit as low down to about 50 aM. The target-specific triggered enzyme-digest activity of DSN and Cas12a system, as well as the powerful separation ability of MNPs ensure the high specificity of developed electrochemical biosensor which can distinguish single base mismatches. In addition, the developed electrochemical biosensor has been successfully applied to detect miR-1246 in blood-derived exosomes and realize distinguishing the BC patients from the healthy individuals. It is expected that the well-designed biosensing platform will open up new avenues for clinical liquid biopsy and early screening of breast cancer, as well as provide deeper insights into clinical oncology treatment.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Exossomos , MicroRNAs , Exossomos/química , Exossomos/metabolismo , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , MicroRNAs/análise , MicroRNAs/genética , Feminino , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas de Magnetita/química , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
3.
ACS Biomater Sci Eng ; 10(7): 4195-4226, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38752382

RESUMO

Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.


Assuntos
Pé Diabético , Cicatrização , Pé Diabético/terapia , Pé Diabético/tratamento farmacológico , Humanos , Cicatrização/efeitos dos fármacos , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Animais , Enzimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA