Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7283-7300, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676656

RESUMO

The epidermal growth factor receptor (EGFR) tertiary C797S mutation is an important cause of resistance to Osimertinib, which seriously hinders the clinical application of Osimertinib. Developing proteolysis-targeting chimeras (PROTACs) targeting EGFR mutants can offer a promising strategy to overcome drug resistance. In this study, some novel PROTACs targeting C797S mutation were designed and synthesized based on a new EGFR inhibitor and displayed a potent degradation effect in H1975-TM cells harboring EGFRL858R/T790M/C797S. The representative compound C6 exhibited a DC50 of 10.2 nM against EGFRL858R/T790M/C797S and an IC50 of 10.3 nM against H1975-TM. Furthermore, C6 also showed potent degradation activity against various main EGFR mutants, including EGFRDel19/T790M/C797S. Mechanistic studies revealed that the protein degradation was achieved through the ubiquitin-proteasome system. Finally, C6 inhibited tumor growth in the H1975-TM xenograft tumor model effectively and safely. This study identifies a novel and potent EGFR PROTAC to overcome Osimertinib resistance mediated by C797S mutation.


Assuntos
Antineoplásicos , Desenho de Fármacos , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases , Proteólise , Receptores ErbB/metabolismo , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Humanos , Animais , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Camundongos Nus , Acrilamidas/farmacologia , Acrilamidas/síntese química , Acrilamidas/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/química , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Quimera de Direcionamento de Proteólise , Indóis , Pirimidinas
2.
J Med Chem ; 67(5): 3590-3605, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412237

RESUMO

VISTA (V-domain Ig suppressor of T cell activation) is a novel immune checkpoint protein and represents a promising target for cancer immunotherapy. Here, we report the design, synthesis, and evaluation of a series of methoxy-pyrimidine-based VISTA small molecule inhibitors with potent antitumor activity. By employing molecular docking and microscale thermophoresis (MST) assay, we identified a lead compound A1 that binds to VISTA protein with high affinity and optimized its structure. A4 was then obtained, which exhibited the strongest binding ability to VISTA protein, with a KD value of 0.49 ± 0.20 µM. In vitro, A4 significantly activated peripheral blood mononuclear cells (PBMCs) induced the release of cytokines such as IFN-γ and enhanced the cytotoxicity of PBMCs against tumor cells. In vivo, A4 displayed potent antitumor activity and synergized with PD-L1 antibody to enhance the therapeutic effect against cancer. These results suggest that compound A4 is an effective VISTA small molecule inhibitor, providing a basis for the future development of VISTA-targeted drugs.


Assuntos
Antígenos B7 , Neoplasias , Humanos , Antígenos B7/química , Antígenos B7/metabolismo , Simulação de Acoplamento Molecular , Leucócitos Mononucleares/metabolismo , Anticorpos
3.
Int J Biochem Cell Biol ; 169: 106539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290690

RESUMO

Doxorubicin (DOX), a widely used chemotherapy agent in cancer treatment, encounters limitations in clinical efficacy due to associated cardiotoxicity. This study aims to explore the role of AKT serine/threonine kinase 2 (AKT2) in mitigating DOX-induced oxidative stress within the heart through both intracellular and extracellular signaling pathways. Utilizing Akt2 knockout (KO) and Nrf2 KO murine models, alongside neonatal rat cardiomyocytes (NRCMs), we systematically investigate the impact of AKT2 deficiency on DOX-induced cardiac injury. Our findings reveal that DOX administration induces significant oxidative stress, a primary contributor to cardiac injury. Importantly, Akt2 deficiency exhibits a protective effect by alleviating DOX-induced oxidative stress. Mechanistically, Akt2 deficiency facilitates nuclear translocation of NRF2, thereby suppressing intracellular oxidative stress by promoting the expression of antioxidant genes. Furthermore, We also observed that AKT2 inhibition facilitates superoxide dismutase 2 (SOD2) expression both inside macrophages and SOD2 secretion to the extracellular matrix, which is involved in lowering oxidative stress in cardiomyocytes upon DOX stimulation. The present study underscores the important role of AKT2 in mitigating DOX-induced oxidative stress through both intracellular and extracellular signaling pathways. Additionally, our findings propose promising therapeutic strategies for addressing DOX-induced cardiomyopathy in clinic.


Assuntos
Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Apoptose
4.
Eur J Med Chem ; 264: 116025, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086189

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent and lethal malignancy worldwide. The MET gene, which encodes receptor tyrosine kinase c-Met, is aberrantly activated in various solid tumors, including non-small cell lung cancer and HCC. In this study, we identified a novel c-Met inhibitor 54 by virtual screening and structural optimization. Compound 54 showed potent c-Met inhibition with an IC50 value of 0.45 ± 0.06 nM. It also exhibited high selectivity among 370 kinases and potent anti-proliferative activity against MET-amplified HCC cells. Moreover, compound 54 displayed significant anti-tumor efficacy in vivo, making it a potential candidate for HCC treatment in future studies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-met , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/química , Antineoplásicos/química , Proliferação de Células
5.
J Med Chem ; 66(24): 16807-16827, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38109261

RESUMO

Tumor cells can evade immune surveillance through overexpressing programmed cell death-ligand 1 (PD-L1) to interact with programmed cell death-1 (PD-1). Besides, tumor-intrinsic PD-L1 is involved in tumor progression without interaction with PD-1, which provides more challenges for the discovery of PD-L1 inhibitors. Herein, we report the discovery of novel PD-L1 inhibitors using the fragment coupling strategy. Among them, B9 was found to inhibit the PD-1/PD-L1 interaction with the best IC50 value of 1.8 ± 0.7 nM. Beyond the blockade of the PD-1/PD-L1 axis, B9 promotes the dimerization, internalization, and degradation of PD-L1. Furthermore, B9 displayed high in vivo antitumor efficacy in the CT26 mouse model and activated the immune microenvironment and induced PD-L1 degradation of PD-L1 in the tumor. These results show that B9 is a promising lead PD-L1 inhibitor through the blockade of PD-1/PD-L1 interaction and functional inhibition of the PD-L1 signal pathway.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Animais , Camundongos , Dimerização , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
6.
Cell Rep ; 42(11): 113417, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37950872

RESUMO

EGFRT790M mutation causes resistance to the first-generation tyrosine kinase inhibitors (TKIs) in patients with non-small cell lung cancer (NSCLC). However, the therapeutic options for sensitizing first TKIs and delaying the emergence of EGFRT790M mutant are limited. In this study, we show that quercetin directly binds with glucose-6-phosphate dehydrogenase (G6PD) and inhibits its enzymatic activity through competitively abrogating NADP+ binding in the catalytic domain. This inhibition subsequently reduces intracellular NADPH levels, resulting in insufficient substrate for methionine reductase A (MsrA) to reduce M790 oxidization of EGFRT790M and inducing the degradation of EGFRT790M. Quercetin synergistically enhances the therapeutic effect of gefitinib on EGFRT790M-harboring NSCLCs and delays the acquisition of the EGFRT790M mutation. Notably, high levels of G6PD expression are correlated with poor prognosis and the emerging time of EGFRT790M mutation in patients with NSCLC. These findings highlight the potential implication of quercetin in overcoming EGFRT790M-driven TKI resistance by directly targeting G6PD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Glucosefosfato Desidrogenase , Mutação/genética , Resistencia a Medicamentos Antineoplásicos/genética
7.
J Med Chem ; 66(23): 16235-16256, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38033250

RESUMO

Prostate cancer (PCa) seriously threatens male health, and targeting dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) has been verified to reduce PCa burden, while the research progress on the DYRK2 inhibitors was relatively slow. In this work, we discovered DYRK2 inhibitor 12 (IC50 = 9681 nM) through virtual screening. Subsequently, we performed systematic structural optimization to obtain 54 (IC50 = 14 nM). Compound 54 exhibited high selectivity among 215 kinases and significantly suppressed the proliferation and metastasis of PCa cells in vitro. Moreover, compound 54 displayed high safety, favorable bioavailability, and potent tumor growth inhibitory activity in vivo, which could be used as a potential candidate in the discovery of novel anti-PCa drugs.


Assuntos
Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Masculino , Humanos , Proteínas Tirosina Quinases , Neoplasias da Próstata/tratamento farmacológico
8.
Int J Biol Macromol ; 253(Pt 5): 127121, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37778588

RESUMO

The precise coupling of tRNAs with their cognate amino acids, known as tRNA aminoacylation, is a stringently regulated process that governs translation fidelity. To ensure fidelity, organisms deploy multiple layers of editing mechanisms to correct mischarged tRNAs. Prior investigations have unveiled the propensity of eukaryotic AlaRS to erroneously attach alanine onto tRNACys and tRNAThr featuring the G4:U69 base pair. In light of this, and given ProXp-ala's capacity in deacylating Ala-tRNAPro, we embarked on exploring whether this trans-editing factor could extend its corrective function to encompass these mischarged tRNAs. Our in vitro deacylation assays demonstrate that murine ProXp-ala (mProXp-ala) is able to efficiently hydrolyze Ala-tRNAThr, while Ala-tRNACys remains unaffected. Subsequently, we determined the first structure of eukaryotic ProXp-ala, revealing a dynamic helix α2 involved in substrate binding. By integrating molecular dynamics simulations and biochemical assays, we pinpointed the pivotal interactions between mProXp-ala and Ala-tRNA, wherein the basic regions of mProXp-ala as well as the C3-G70 plays essential role in recognition. These observations collectively provide a cogent rationale for mProXp-ala's deacylation proficiency against Ala-tRNAThr. Our findings offer valuable insights into the translation quality control within higher eukaryotic organisms, where the fidelity of translation is safeguarded by the multi-functionality of extensively documented proteins.


Assuntos
Alanina , Aminoacil-tRNA Sintetases , Animais , Camundongos , Alanina/genética , RNA de Transferência de Treonina , RNA de Transferência de Cisteína , Aminoacil-tRNA Sintetases/química , Aminoácidos/química , RNA de Transferência/genética , Mamíferos/genética
9.
J Med Chem ; 66(21): 14633-14652, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37885208

RESUMO

Epidermal growth factor receptor (EGFR)-activating mutation is an important oncogenic driver of nonsmall cell lung cancer (NSCLC) patients. Osimertinib has been the first-line treatment for EGFR-mutated NSCLC. However, the tertiary C797S mutation leads to Osimertinib resistance by blocking the covalent binding of Cys797 to Osimertinib. To date, there are no approved inhibitors for the treatment of Osimertinib resistance. Herein, we identified a novel lead compound S8 targeting EGFRL858R/T790M/C797S by structure-based virtual screening and synthesized a series of novel compounds. Representative compound C34 showed potent inhibitory activity against EGFRL858R/T790M/C797S with an IC50 of 5.1 nM and significantly inhibited the proliferation of the H1975-TM cell line harboring EGFRL858R/T790M/C797S with an IC50 of 0.05 µM. Additionally, compound C34 demonstrated good pharmacokinetic properties with an oral bioavailability of 30.72% and significantly inhibited tumor growth in the H1975-TM xenograft tumor model. This study provides a novel thiazole derivative as an EGFR inhibitor to overcome C797S-mediated resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Mutação , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Compostos de Anilina/farmacologia , Linhagem Celular Tumoral
10.
Bioorg Chem ; 141: 106919, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871388

RESUMO

Endocrine therapy (ET) is a well-validated strategy for estrogen receptor α positive (ERα + ) breast cancer therapy. Despite the clinical success of current standard of care (SoC), endocrine-resistance inevitably emerges and remains a significant medical challenge. Herein, we describe the structural optimization and evaluation of a new series of selective estrogen receptor covalent antagonists (SERCAs) based on benzothiophene scaffold. Among them, compounds 15b and 39d were identified as two highly potent covalent antagonists, which exhibits superior antiproliferation activity than positive controls against MCF-7 cells and shows high selectivity over ERα negative (ERα-) cells. More importantly, their mode of covalent engagement at Cys530 residue was accurately illustrated by a cocrystal structure of 15b-bound ERαY537S (PDB ID: 7WNV) and intact mass spectrometry, respectively. Further in vivo studies demonstrated potent antitumor activity in MCF-7 xenograft mouse model and an improved safety profile. Collectively, these compounds could be promising candidates for future development of the next generation SERCAs for endocrine-resistant ERα + breast cancer.


Assuntos
Neoplasias da Mama , Antagonistas do Receptor de Estrogênio , Humanos , Camundongos , Animais , Feminino , Receptor alfa de Estrogênio , Receptores de Estrogênio , Cristalografia por Raios X , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Antagonistas de Estrogênios
11.
J Med Chem ; 66(18): 13172-13188, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37674362

RESUMO

Current small-molecule PD-1/PD-L1 inhibitors are mainly based on the arylmethylamine/biphenyl core scaffold. Herein, we designed for the first time a series of non-arylmethylamine analogues (oxadiazole thioether derivatives) as small-molecule PD-1/PD-L1 inhibitors. Among them, compound LP23 exhibited the most potent PD-L1 inhibitory activity with an IC50 of 16.7 nM, 3.2-fold better than the lead BMS-202 (IC50 = 53.6 nM). The X-ray crystal structure of LP23 in complex with PD-L1 was solved at a resolution of 2.6 Å, which further confirmed the high binding affinity of LP23 to PD-L1. In the HepG2/Jurkat T cell co-culture model, LP23 effectively promoted HepG2 cell death by restoring the immune function of T cells. In addition, LP23 showed excellent in vivo antitumor efficacy (TGI = 88.6% at 30 mg/kg) and benign toxicity profiles in a B16-F10 tumor model by modulating PD-L1. In summary, LP23 represents the first non-arylmethylamine-based small-molecule PD-1/PD-L1 inhibitor worthy of further investigation.

12.
J Med Chem ; 66(17): 11881-11892, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37594853

RESUMO

The V-domain Ig suppressor of T-cell activation (VISTA) is a promising negative immune checkpoint and plays a critical role in the regulation of the quiescence of naïve T lymphocytes. Most patients however do not experience durable disease control from current immune checkpoint inhibitors and discovery of inhibitors targeting novel immune checkpoints is necessary. Herein, we report our discovery and optimization of benzimidazoles as the bifunctional inhibitors of VISTA. Compound 1 is identified as a bifunctional inhibitor targeting VISTA, which shows good binding affinity to VISTA and induces VISTA degradation in HepG2 cells through an autophagic mechanism. Compound 1 rescues VISTA-mediated immunosuppression effectively and enhances antitumor activity of immune cells. 1 activates the antitumor immunity in vivo and suppresses tumor growth in a CT26 mouse model significantly. Our results show that compound 1 is a promising VISTA inhibitor and degrader and offers novel approach for cancer immunotherapy through VISTA degradation.


Assuntos
Autofagia , Ativação Linfocitária , Animais , Camundongos , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Divisão Celular , Modelos Animais de Doenças
13.
J Med Chem ; 66(14): 9537-9560, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37409679

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) is correlated with tumor development and chemotherapy resistance. The catalytic activity of the enzyme has been recognized as one of the important factors in inducing anthracycline (ANT) resistance in cancer cells. Inhibition of AKR1C3 activity may provide a promising approach to restore the chemosensitivity of ANT-resistant cancers. Herein, a series of biaryl-containing AKR1C3 inhibitors has been developed. The best analogue S07-1066 selectively blocked AKR1C3-mediated reduction of doxorubicin (DOX) in MCF-7 transfected cell models. Furthermore, co-treatment of S07-1066 significantly synergized DOX cytotoxicity and reversed the DOX resistance in MCF-7 cells overexpressing AKR1C3. The potential synergism of S07-1066 over DOX cytotoxicity was demonstrated in vitro and in vivo. Our findings indicate that inhibition of AKR1C3 potentially enhances the therapeutic efficacy of ANTs and even suggests that AKR1C3 inhibitors may serve as effective adjuvants to overcome AKR1C3-mediated chemotherapy resistance in cancer treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase , Doxorrubicina/farmacologia , Antraciclinas , Antibióticos Antineoplásicos/farmacologia , Células MCF-7 , 3-Hidroxiesteroide Desidrogenases/farmacologia , Hidroxiprostaglandina Desidrogenases , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia
14.
Bioorg Chem ; 138: 106682, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37339563

RESUMO

Hematopoietic progenitor kinase 1 (HPK1), a member of mitogen-activated protein kinase kinase kinase kinase (MAP4K) family of Ste20 serine/threonine kinases, is a negative regulator of T-cell receptor (TCR) signaling. Inactivating HPK1 kinase has been reported to be sufficient to elicit antitumor immune response. Therefore, HPK1 has attracted much attention as a promising target for tumor immunotherapy. A few of HPK1 inhibitors have been reported, and none of them have been approved for clinical applications. Hence, more effective HPK1 inhibitors are needed. Herein, a series of structurally novel diaminotriazine carboxamides were rationally designed, synthesized and evaluated for their inhibitory activity against HPK1 kinase. Most of them exhibited potent inhibitory potency against HPK1 kinase. In particular, compound 15b showed more robust HPK1 inhibitory activity than that of 11d developed by Merck in kinase activity assay (IC50 = 3.1 and 8.2 nM, respectively). The significant inhibitory potency against SLP76 phosphorylation in Jurkat T cells further confirmed the efficacy of compound 15b. In human peripheral blood mononuclear cell (PBMC) functional assays, compound 15b more significantly induced the production of interleukin 2 (IL-2) and interferon γ (IFN-γ) relative to 11d. Furthermore, 15b alone or in combination with anti-PD-1 antibodies showed potent in vivo antitumor efficacy in MC38 tumor-bearing mice. Compound 15b represents a promising lead for the development of effective HPK1 small-molecule inhibitors.


Assuntos
Leucócitos Mononucleares , Transdução de Sinais , Animais , Humanos , Camundongos , Fosforilação , Células Jurkat
15.
J Med Chem ; 66(10): 6849-6868, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37141440

RESUMO

Osimertinib resistance is an unmet clinical need for the treatment of non-small cell lung cancer (NSCLC), and the main mechanism is tertiary C797S mutation of epidermal growth factor receptor (EGFR). To date, there is no inhibitor approved for the treatment of Osimertinib-resistant NSCLC. Herein, we reported a series of Osimertinib derivatives as fourth-generation inhibitors which were rationally designed. Top candidate D51 potently inhibited the EGFRL858R/T790M/C797S mutant with an IC50 value of 14 nM and suppressed the proliferation of H1975-TM cells with an IC50 value of 14 nM, which show over 500-fold selectivity against wild-type forms. Moreover, D51 inhibited the EGFRdel19/T790M/C797S mutant and the proliferation of the PC9-TM cell line with IC50 values of 62 and 82 nM. D51 also exhibited favorable in vivo druggability, including PK parameters, safety properties, in vivo stability, and antitumor activity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
17.
J Med Chem ; 66(6): 4215-4230, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36800260

RESUMO

Prostate cancer (PCa) is a common male cancer with high incidence and mortality, and hormonal therapy as the major treatment for PCa patients is troubled by the inevitable resistance that makes us identify novel targets for PCa. Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) was found to be an effective target for the treatment of PCa, but the research on its inhibitors is rather little. In this work, a potent DYRK2 inhibitor 43 (IC50 = 0.6 nM) was acquired through virtual screening and structural optimization, which displayed high selectivity among 205 kinases; meanwhile, detailed interactions of 43 with DYRK2 were illustrated by the cocrystal. Furthermore, 43 possessed great water solubility (29.5 mg/mL), favorable safety properties (LD50 > 10,000 mg/kg), and potent anti-PCa activities, which could be used as a potential candidate in further preclinical studies.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Solubilidade , Neoplasias da Próstata/tratamento farmacológico
18.
J Med Chem ; 66(3): 2064-2083, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36579489

RESUMO

Blocking the PD-1/PD-L1 interaction has become an important strategy for tumor therapy, which has shown outstanding therapeutic effects in clinical settings. However, unsatisfactory response rates and immune-related adverse effects limit the use of anti-PD1/PD-L1 antibodies. Here, we report the discovery and identification of S4-1, an innovative small-molecule inhibitor of PD-L1. In vitro, S4-1 effectively altered the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, improved its localization to endoplasmic reticulum, and thus enhanced the cytotoxicity of peripheral blood mononuclear cells toward tumor cells. In vivo, S4-1 significantly inhibited tumor growth in both lung and colorectal cancer models, particularly in colorectal cancer, where it led to complete clearance of a portion of the tumor cells. Furthermore, S4-1 induced T-cell activation and inversed the inhibitory tumor microenvironment, consistent with the PD-L1/PD-1 pathway blockade. These data support the continued evaluation of S4-1 as an alternative ICB therapeutic strategy.


Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Antígeno B7-H1 , Receptor de Morte Celular Programada 1/metabolismo , Leucócitos Mononucleares/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
19.
Acta Pharm Sin B ; 12(12): 4446-4457, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561991

RESUMO

Programmed cell death 1(PD-1)/programmed cell death ligand 1(PD-L1) have emerged as one of the most promising immune checkpoint targets for cancer immunotherapy. Despite the inherent advantages of small-molecule inhibitors over antibodies, the discovery of small-molecule inhibitors has fallen behind that of antibody drugs. Based on docking studies between small molecule inhibitor and PD-L1 protein, changing the chemical linker of inhibitor from a flexible chain to an aromatic ring may improve its binding capacity to PD-L1 protein, which was not reported before. A series of novel phthalimide derivatives from structure-based rational design was synthesized. P39 was identified as the best inhibitor with promising activity, which not only inhibited PD-1/PD-L1 interaction (IC50 = 8.9 nmol/L), but also enhanced killing efficacy of immune cells on cancer cells. Co-crystal data demonstrated that P39 induced the dimerization of PD-L1 proteins, thereby blocking the binding of PD-1/PD-L1. Moreover, P39 exhibited a favorable safety profile with a LD50 > 5000 mg/kg and showed significant in vivo antitumor activity through promoting CD8+ T cell activation. All these data suggest that P39 acts as a promising small chemical inhibitor against the PD-1/PD-L1 axis and has the potential to improve the immunotherapy efficacy of T-cells.

20.
J Med Chem ; 65(24): 16252-16267, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36503248

RESUMO

The two proteases, PLpro and Mpro, of SARS-CoV-2 are essential for replication of the virus. Using a structure-based co-pharmacophore screening approach, we developed a novel dual-targeted inhibitor that is equally potent in inhibiting PLpro and Mpro of SARS-CoV-2. The inhibitor contains a novel warhead, which can form a covalent bond with the catalytic cysteine residue of either enzyme. The maximum rate of the covalent inactivation is comparable to that of the most potent inhibitors reported for the viral proteases and covalent inhibitor drugs currently in clinical use. The covalent inhibition appears to be very specific for the viral proteases. The inhibitor has a potent antiviral activity against SARS-CoV-2 and is also well tolerated by mice and rats in toxicity studies. These results suggest that the inhibitor is a promising lead for development of drugs for treatment of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Ratos , Papaína , Cisteína Endopeptidases/química , Proteínas não Estruturais Virais , Peptídeo Hidrolases , Proteases Virais , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA