Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 30(2): 53-62, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38019085

RESUMO

The effect and mechanism of type III recombinant humanized collagen (hCOLIII) on human vascular endothelial EA.hy926 cells at the cellular and molecular levels were investigated. The impact of hCOLIII on the proliferation of EA.hy926 cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid assay, the effect of hCOLIII on cell migration was investigated by scratch assay, the impact of hCOLIII on cell cycle and apoptosis was detected by flow cytometry, the ability of hCOLIII to induce angiogenesis of EA.hy926 cells was evaluated by angiogenesis assay, and the effect of hCOLIII on vascular endothelial growth factor (VEGF) expression was detected by real-time reverse transcription-polymerase chain reaction analysis. The hCOLIII at concentrations of 0.5, 0.25, and 0.125 mg/mL all showed specific effects on the proliferation and migration of human vascular endothelial cells. It could also affect the cell cycle, increase the proliferation index, and increase the expression level of VEGF in human vascular endothelial cells. In the meantime, hCOLIII at the concentration of 0.5 mg/mL also showed a promoting effect on vessel formation. hCOLIII can potentially promote the endothelization process of blood vessels, mainly by affecting the proliferation, migration, and vascular-like structure of human endothelial cells. At the same time, hCOLIII can promote the expression of VEGF. This collagen demonstrated its potential as a raw material for cardiovascular implants.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Colágeno Tipo III/metabolismo , Colágeno Tipo III/farmacologia , Colágeno/farmacologia , Colágeno/metabolismo , Movimento Celular , Proliferação de Células
2.
Int J Biol Macromol ; 251: 126293, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591423

RESUMO

Cardiovascular disease has become one of the main causes of death. It is the common goal of researchers worldwide to develop small-diameter vascular grafts to meet clinical needs. Collagen is a valuable biomaterial that has been used in the preparation of vascular grafts and has shown good results. Recombinant humanized collagen (RHC) has the advantages of clear chemical structure, batch stability, no virus hazard and low immunogenicity compared with animal-derived collagen, which can be developed as vascular materials. In this study, Poly (l-lactide- ε-caprolactone) with l-lactide/ε-caprolactone (PLCL) and type III recombinant humanized collagen (hCOLIII) were selected as raw materials to prepare vascular grafts, which were prepared by the same-nozzle electrospinning apparatus. Meanwhile, procyanidin (PC), a plant polyphenol, was used to cross-link the vascular grafts. The physicochemical properties and biocompatibility of the fabricated vascular grafts were investigated by comparing with glutaraldehyde (GA) crosslinked vascular grafts and pure PLCL grafts. Finally, the performance of PC cross-linked PLCL-hCOLIII vascular grafts were evaluated by rabbit carotid artery transplantation model. The results indicate that the artificial vascular grafts have good cell compatibility, blood compatibility, and anti-calcification performance, and can remain unobstructed after 30 days carotid artery transplantation in rabbits. The grafts also showed inhibitory effects on the proliferation of SMCs and intimal hyperplasia, demonstrating its excellent performance as small diameter vascular grafts.

3.
Bioengineered ; 13(3): 7925-7938, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358008

RESUMO

A completely confluent endothelial cell (EC) monolayer is required to maintain proper vascular function in small diameter tissue-engineered vascular graft (TEVG). However, the most effective method for EC attachment to the luminal surface and formation of an entire endothelium layer that works in vitro remains a complicated challenge that requires urgent resolution. Although pulsatile flow has been shown to be better suited for the generation of functional endothelium, the optimal frequency setting is unknown. Several pulsatile flow frequencies were used to implant rat bone mesenchymal stem cells (MSC) into the lumen of decellularized porcine carotid arteries. The endothelium's integrity and cell activity were investigated in order to determine the best pulse frequency settings. The results showed that MSC were maximally preserved and exhibited maximal morphological changes with improved endothelialization performance in response to increased pulse stimulation frequency. Increased pulse frequency stimulation stimulates the expression of mechanoreceptor markers, cytoskeleton reorganization in the direction of blood flow, denser skeletal proteins fibronectin, and stronger intercellular connections when compared to constant pulse frequency stimulation. MSC eventually develops an intact endothelial layer with anti-thrombotic properties on the inner wall of the decellularized tubular lumen. Conclusion: The decellularized vessels retain the three-dimensional structure of the vasculature, have a surface topography suitable for MSC growth, and have good mechanical properties. By increasing the frequency of pulsed stimulation, MSC endothelialize the lumen of the decellularized vasculature. It is expected to have anti-thrombotic and anti-neointimal hyperplasia properties after implantation, ultimately improving the patency of TEVG.


Assuntos
Prótese Vascular , Células-Tronco Mesenquimais , Animais , Reatores Biológicos , Células Endoteliais , Ratos , Estresse Mecânico , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
4.
Adv Mater ; 33(39): e2101455, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34369623

RESUMO

The efficient utilization of near-infrared (NIR) light for photocatalytic hydrogen generation is vitally important to both solar hydrogen energy and hydrogen medicine, but remains a challenge at present, owing to the strict requirement of the semiconductor for high NIR responsiveness, narrow bandgap, and suitable redox potentials. Here, an NIR-active carbon/potassium-doped red polymeric carbon nitride (RPCN) is achieved for by using a similar-structure dopant as the melamine (C3 H6 N6 ) precursor with the solid KCl. The homogeneous and high incorporation of carbon and potassium remarkably narrows the bandgap of carbon nitride (1.7 eV) and endows RPCN with a high NIR-photocatalytic activity for H2 evolution from water at the rate of 140 µmol h-1 g-1 under NIR irradiation (700 nm ≤ λ ≤ 780 nm), and the apparent quantum efficiency is high as 0.84% at 700 ± 10 nm (and 13% at 500 ± 10 nm). A proof-of-concept experiment on a tumor-bearing mouse model verifies RPCN as being capable of intratumoral NIR-photocatalytic hydrogen generation and simultaneous glutathione deprivation for safe and high-efficacy drug-free cancer therapy. The results shed light on designing efficient photocatalysts to capture the full spectrum of solar energy, and also pioneer a new pathway to develop NIR photocatalysts for hydrogen therapy of major diseases.

5.
Cell Tissue Bank ; 22(2): 277-286, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33123849

RESUMO

Tissue engineering vascular grafts (TEVGs) constructed by decellularized arteries have the potential to replace autologous blood vessels in bypass surgery for patients with cardiovascular disease. There are various methods of decellularization without a standard protocol. Detergents approaches are simple, and easy control of experimental conditions. Non-ionic detergent Triton X-100 and ionic detergent sodium dodecyl sulfate (SDS) are the most commonly used detergents. In this study, we used Triton X-100 and SDS with different concentrations to decellularize porcine carotid arteries. After that, we investigated the acellular effect and mechanical properties of decellularized arteries to find a promising concentration combination for decellularization. Results showed that any detergents' combination would damage the inherent structure of extracellular matrix, and the destruction increased with the increase of detergents' concentration. We concluded that the decellularization approach of 0.5% Triton X-100 for 24 h combined with 0.25% SDS for 72 h could help to obtain decellularized arteries with minimum destruction. This protocol may be able to prepare a clinically suitable vascular scaffold for TEVGs.


Assuntos
Prótese Vascular , Engenharia Tecidual , Animais , Artérias Carótidas , Detergentes/farmacologia , Matriz Extracelular , Octoxinol/farmacologia , Dodecilsulfato de Sódio/farmacologia , Suínos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA