Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(4): 1728-1739, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009289

RESUMO

BACKGROUND: The commercialized Bt (Bacillus thuringiensis) crops accumulate Bt protein within cells, but the intracellular interactions of foreign protein with endogenous protein inevitably result in large or small unintended effects. In this study, the Bt gene Cry1Ca was linked with the sequences of extracellular secretion signal peptide and carbohydrate binding module 11 to constitute a fusion gene SP-Cry1Ca-CBM11, and the fusion gene driven by constitutive promoters was used for secreting and anchoring onto the cell wall to minimize unintended effects. RESULTS: The transient expression in tobacco leaves demonstrated that the fusion protein was anchored on cell walls. The Cry1Ca contents of five homozygous rice transformants of single-copy insertion were different and descended in the order leaf > root > stem. The maximum content of Cry1Ca was 17.55 µg g-1 in leaves of transformant 21H037. The bioassay results revealed that the transformants exhibited high resistance to lepidopteran pests. The corrected mortality of pink stem borer (Sesamia inferens) and striped stem borer (Chilo suppressalis) ranged from 96.33% to 100%, and from 83.32% to 100%, respectively, and the corrected mortality of rice leaf roller (Cnaphalocrocis medinalis) was 92.53%. Besides, the agronomic traits of the five transformants were normal and similar to that of the recipient, and the transformants were highly resistant to glyphosate at the germination and seedling stages. CONCLUSION: The fusion Bt protein was accumulated on cell walls and endowed the rice with high resistance to lepidopteran pests without unintended effects in agronomic traits. © 2023 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Lepidópteros , Mariposas , Oryza , Animais , Lepidópteros/genética , Oryza/genética , Oryza/metabolismo , Endotoxinas/farmacologia , Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Proteínas de Bactérias/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores/métodos
2.
Appl Environ Microbiol ; 72(9): 6212-24, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16957248

RESUMO

Xanthomonas oryzae pv. oryzicola, the cause of bacterial leaf streak in rice, possesses clusters of hrp genes that determine its ability to elicit a hypersensitive response (HR) in nonhost tobacco and pathogenicity in host rice. A 27-kb region of the genome of X. oryzae pv. oryzicola (RS105) was identified and sequenced, revealing 10 hrp, 9 hrc (hrp conserved), and 8 hpa (hrp-associated) genes and 7 regulatory plant-inducible promoter boxes. While the region from hpa2 to hpaB and the hrpF operon resembled the corresponding genes of other xanthomonads, the hpaB-hrpF region incorporated an hrpE3 gene that was not present in X. oryzae pv. oryzae. We found that an hrpF mutant had lost the ability to elicit the HR in tobacco and pathogenicity in adult rice plants but still caused water-soaking symptoms in rice seedlings and that Hpa1 is an HR elicitor in nonhost tobacco whose expression is controlled by an hrp regulator, HrpX. Using an Hrp phenotype complementation test, we identified a small hrp cluster containing the hrpG and hrpX regulatory genes, which is separated from the core hrp cluster. In addition, we identified a gene, prhA (plant-regulated hrp), that played a key role in the Hrp phenotype of X. oryzae pv. oryzicola but was neither in the core hrp cluster nor in the hrp regulatory cluster. A prhA mutant failed to reduce the HR in tobacco and pathogenicity in rice but caused water-soaking symptoms in rice. This is the first report that X. oryzae pv. oryzicola possesses three separate DNA regions for HR induction in nonhost tobacco and pathogenicity in host rice, which will provide a fundamental base to understand pathogenicity determinants of X. oryzae pv. oryzicola compared with those of X. oryzae pv. oryzae.


Assuntos
Genes Bacterianos , Família Multigênica , Xanthomonas/genética , Xanthomonas/patogenicidade , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Escherichia coli/genética , Genes Reguladores , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Óperon , Oryza/microbiologia , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Homologia de Sequência de Aminoácidos , Nicotiana/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA