Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 447: 130762, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36638676

RESUMO

Microplastic threats to biodiversity, health and ecological safety are adding to concern worldwide, but the real impacts on the functioning of organisms and ecosystems are obscure owing to their inert characteristics. Here we investigated the long-lasting ecological effects of six prevalent microplastic types: polyethylene (PE), polypropylene (PP), polyamide (PA), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) on soil bacteria at a 2 % (w/w) level. Due to the inertia and lack of available nitrogen of these microplastics, their effects on bacteriome tended to converge after one year and were strongly different from their short-term effects. The soil volumes around microplastics were very specific, in which the microplastic-adapted bacteria (e.g., some genera in Actinobacteria) were enriched but the phyla Bacteroidetes and Gemmatimonadetes declined, resulting in higher microbial nitrogen requirements and reduced organic carbon mineralization. The reshaped bacteriome was specialized in the genetic potential of xenobiotic and lipid metabolism as well as related oxidation, esterification, and hydrolysis processes, but excessive oxidative damage resulted in severe weakness in community genetic information processing. According to model predictions, microplastic effects are indirectly derived from nutrients and oxidative stress, and the effects on bacterial functions are stronger than on structure, posing a heavy risk to soil ecosystems.


Assuntos
Microplásticos , Plásticos , Microplásticos/toxicidade , Plásticos/toxicidade , Ecossistema , Solo , Polipropilenos , Bactérias/genética
2.
Sci Total Environ ; 806(Pt 3): 151211, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715219

RESUMO

In recent years, nano-contamination in the soil environment has aroused concern. But it is still uncertain whether the interactions of nano- and metal-pollutants would have a combined toxic effect on plants. In this study, we investigated the effects of joint exposure to zinc oxide nanoparticles (ZnO NPs) and Cd on the root tissue of Phytolacca americana L. Spin-polarized density functional theory simulations assumed that the plant may undergo metal toxicity or acidosis upon joint exposure to ZnO NPs/Cd. Subsequently, experimental exposure of P. americana verified the combined toxic effects. The plant grew normally with a single treatment of ZnO NPs (500 mg/kg) or low doses of Cd (10 mg/kg). However, root growth was significantly inhibited with the combined treatments (up to 43% reduction); additionally, Cd ions were transported to the shoot, leading to shoot growth inhibition (translocation factor > 1). The antioxidant enzymes in the root (superoxide dismutase, peroxidase, and catalase) were highly activated to resist stress, accompanied by a greater than two-fold increase in thiobarbituric acid reactive substances. Corresponding to physiological indicators, biological transmission electron microscopy revealed severe damage to the root cells. Moreover, ZnO NPs/Cd accumulation was observed in the root cytoderm, which confirmed the toxicity of the combined effects. Our study provides insight into the potential combined toxicity of ZnO NPs and heavy metals in polluted environments, such as mining areas and electronic waste sites, and agricultural soils.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Phytolacca americana , Poluentes do Solo , Óxido de Zinco , Cádmio/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Raízes de Plantas , Poluentes do Solo/toxicidade , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA