Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 668: 375-384, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678892

RESUMO

Urea electrolysis is an appealing topic for hydrogen production due to its ability to extract hydrogen at a lower potential. However, it is plagued by sluggish kinetics and noble-metal catalyst requirements. Herein, we developed nickel-iron-layered double hydroxide (NiFe-LDH) nanolayers with abundant oxygen vacancies (OV) via synergistically etching nickel foam with Fe3+ and Cl- ions, enabling the efficient conversion of urea into H2 and N2. The synthesized OV-NiFe-LDH exhibits a lower potential (1.30 vs. reversible hydrogen electrode, RHE) for achieving 10 mA cm-2 in the urea oxidation reaction (UOR), surpassing most recently reported Ni-based electrodes. OV provides favorable conductivity and a large surface area, which results in a 4.1-fold in electron transport and a 5.1-fold increase in catalyst reactive sites. Density Functional Theory (DFT) calculations indicate that OV can lower the adsorption energy of urea, and enhance the bonding strength of *CONHNH, giving rise to improved UOR. This study provides a viable path toward economical and efficient production of high-purity hydrogen.

2.
J Colloid Interface Sci ; 612: 584-597, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016019

RESUMO

In this work, we proposed a novel strategy of copper (Cu) doping to enhance the nitrogen oxides (NOx) removal efficiency of iron (Fe)-based catalysts at low temperature through a simple citric acid mixing method, which is critical for its practical application. The doping of Cu significantly improves the deNOx performance of Fe-based catalysts below 200 °C, and the optimal catalyst is (Cu0.22Fe1.78)1-δO3, which deNOx efficiency can reach 100% at 160-240 °C. From the macro aspects, the main reasons for the excellent catalytic activity of the (Cu0.22Fe1.78)1-δO3 catalyst are the large number of oxygen vacancies (Ovac), appropriate Fe3+ and Cu2+ contents, stronger surface acidity and redox ability. From the micro aspects, the Ovac plays a key role in enhancing molecular adsorption, oxidation, and the deNOx reaction over the Fe-based catalyst surface, which promoting order is CuOvac > Ovac > Cu. This work provides a new insight for the mechanism study of oxygen vacancy engineering and also accelerates the development of CuFe bimetal composite catalysts at low temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA