Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng ; 14: 20417314231180033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333896

RESUMO

Spinal cord injury (SCI) is a serious refractory disease of the central nervous system (CNS), which mostly caused by high-energy trauma. Existing interventions such as hormone shock and surgery are insufficient options, which relate to the secondary inflammation and neuronal dysfunction. Hydrogel with neuron-protective behaviors attracts tremendous attention, and black phosphorus quantum dots (BPQDs) encapsulating with Epigallocatechin-3-gallate (EGCG) hydrogels (E@BP) is designed for inflammatory modulation and SCI treatment in this study. E@BP displays good stability, biocompatibility and safety profiles. E@BP incubation alleviates lipopolysaccharide (LPS)-induced inflammation of primary neurons and enhances neuronal regeneration in vitro. Furthermore, E@BP reconstructs structural versus functional integrity of spinal cord tracts, which promotes recovery of motor neuron function in SCI rats after transplantation. Importantly, E@BP restarts the cell cycle and induces nerve regeneration. Moreover, E@BP diminishes local inflammation of SCI tissues, characterized by reducing accumulation of astrocyte, microglia, macrophages, and oligodendrocytes. Indeed, a common underlying mechanism of E@BP regulating neural regenerative and inflammatory responses is to promote the phosphorylation of key proteins related to AKT signaling pathway. Together, E@BP probably repairs SCI by reducing inflammation and promoting neuronal regeneration via the AKT signaling pathway.

2.
Molecules ; 27(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35630799

RESUMO

Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has been reported, the remaining GAOs corresponding to various STLs' biosynthesis pathways remain unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X. sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned, and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs, sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction (qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) methods. The results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A (GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.


Assuntos
Xanthium , Clonagem Molecular , Oxirredutases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sesquiterpenos de Germacrano , Xanthium/genética
3.
Front Cell Dev Biol ; 9: 642533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968928

RESUMO

Objective: Many tissues contained resident mesenchymal stromal/stem cells (MSCs) that facilitated tissue hemostasis and repair. However, there is no typical marker to identify the resident cardiac MSCs. We aimed to determine if CD51 could be an optimal marker of cardiac MSCs and assess their therapeutic potential for mice with acute myocardial infarction (AMI). Methods: Cardiac-derived CD51+CD31-CD45-Ter119- cells (named CD51+cMSCs) were isolated from C57BL/6 mice(7-day-old) by flow cytometry. The CD51+cMSCs were characterized by proliferation capacity, multi-differentiation potential, and expression of typical MSC-related markers. Adult C57BL/6 mice (12-week-old) were utilized for an AMI model via permanently ligating the left anterior descending coronary artery. The therapeutic efficacy of CD51+cMSCs was estimated by echocardiography and pathological staining. To determine the underlying mechanism, lentiviruses were utilized to knock down gene (stem cell factor [SCF]) expression of CD51+cMSCs. Results: In this study, CD51 was expressed in the entire layers of the cardiac wall in mice, including endocardium, epicardium, and myocardium, and its expression was decreased with age. Importantly, the CD51+cMSCs possessed potent self-renewal potential and multi-lineage differentiation capacity in vitro and also expressed typical MSC-related surface proteins. Furthermore, CD51+cMSC transplantation significantly improved cardiac function and attenuated cardiac fibrosis through pro-angiogenesis activity after myocardial infarction in mice. Moreover, SCF secreted by CD51+cMSCs played an important role in angiogenesis both in vivo and in vitro. Conclusions: Collectively, CD51 is a novel marker of cardiac resident MSCs, and CD51+cMSC therapy enhances cardiac repair at least partly through SCF-mediated angiogenesis.

4.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2020-2028, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33982515

RESUMO

Sesquiterpene lactones are a kind of widely distributed natural organic compounds with anti-tumor, anti-malarial and other significant biological activities. Based on their carbocylic skeletons, sesquiterpene lactones are classified into germacranolide, guaia-nolide, xanthanolide, pseudo-guaianolide, elemonolide and eudesmanolide, etc. In recent years, with the development of various omics and synthetic biology technologies, the biosynthetic pathways of sesquiterpene lactone compounds of different structural types have gradually been resolved. Among them, the researches on germacrene-derived sesquiterpene lactones are relatively more than others. Therefore, this article focused on the germacrene-derived sesquiterpene lactone biosynthesis pathways and their key enzyme genes, which can lay the foundation for in-depth analysis of sesquiterpene lactone biosynthetic pathways, functional gene mining and heterologous synthesis of active ingredients.


Assuntos
Sesquiterpenos , Vias Biossintéticas , Lactonas
5.
Stem Cell Res Ther ; 10(1): 331, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747966

RESUMO

BACKGROUND: Experimental and clinical trials have demonstrated the efficiency of bone marrow-derived mesenchymal stromal/stem cells (bMSCs) in the treatment of myocardial infarction. However, after intravenous injection, the ineffective migration of engrafted bMSCs to the hearts remains an obstacle, which has an undesirable impact on the efficiency of cell-based therapy. Therefore, we attempted to identify a marker that could distinguish a subpopulation of bMSCs with a promising migratory capacity. METHODS: Here, CD51-negative and CD51-positive cells were isolated by flow cytometry from Ter119-CD45-CD31-bMSCs and cultured in specifically modified medium. The proliferation ability of the cells was evaluated by 5-ethynyl-2'-deoxyuridine (EdU) staining or continuously monitored during culture, and the differentiation potential was assessed by culturing the cells in the appropriate conditioned media. Wound healing assays, transwell assays and quantitative polymerase chain reaction (qPCR) were used to measure the migratory ability. The mice were subjected to a sham operation or myocardial infarction (MI) by permanently occluding the coronary artery, and green fluorescent protein (GFP)-labelled cells were transplanted into the mice via intravenous infusion immediately after MI. Heart function was measured by echocardiography; infarct myocardium tissues were detected by triphenyl tetrazolium chloride (TTC) staining. Additionally, immunofluorescence staining was used to verify the characteristics of CD51+bMSCs and inflammatory responses in vivo. Statistical comparisons were performed using a two-tailed Student's t test. RESULTS: In this study, the isolated CD51-bMSCs and CD51+bMSCs, especially the CD51+ cells, presented a favourable proliferative capacity and could differentiate into adipocytes, osteocytes and chondrocytes in vitro. After the cells were transplanted into the MI mice by intravenous injection, the therapeutic efficiency of CD51+bMSCs in improving left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) was better than that of CD51-bMSCs. Compared with CD51-bMSCs, CD51+bMSCs preferentially migrated to and were retained in the infarcted hearts at 48 h and 8 days after intravenous injection. Accordingly, the migratory capacity of CD51+bMSCs exceeded that of CD51-bMSCs in vitro, and the former cells expressed higher levels of chemokine receptors or ligands. Interestingly, the retained CD51+bMSCs retained in the myocardium possessed proliferative potential but only differentiated into endothelial cells, smooth muscle cells, fibroblasts or cardiomyocytes. Transplantation of CD51+bMSCs partially attenuated the inflammatory response in the hearts after MI, while the potential for inflammatory suppression was low in CD51-bMSC-treated mice. CONCLUSIONS: These findings indicated that the CD51-distinguished subpopulation of bMSCs facilitated proliferation and migration both in vitro and in vivo, which provided a novel cell-based strategy to treat acute MI in mice by intravenous injection.


Assuntos
Células da Medula Óssea/citologia , Movimento Celular , Integrina alfaV/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Animais , Diferenciação Celular , Separação Celular , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Testes de Função Cardíaca , Inflamação/patologia , Lentivirus/genética , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Remodelação Ventricular
6.
Stem Cell Res Ther ; 10(1): 127, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029167

RESUMO

BACKGROUND: Bone-derived mesenchymal stem cell (BMSC) transplantation has been reported to be effective for the treatment of ischemic heart disease, but whether BMSCs are the optimal cell type remains under debate. Increasing numbers of studies have shown that Nestin, an intermediate filament protein, is a potential marker for MSCs, which raises the question of whether Nestin+ cells in BMSCs may play a more crucial role in myocardial repair. METHODS: Nestin+ cells were isolated using flow cytometry by gating for CD45- Ter119- CD31- cells from the compact bone of Nestin-GFP transgenic mice, expressing GFP driven by the Nestin promoter. Colony-forming and proliferative curve assays were conducted to determine the proliferative capacity of these cells, while qRT-PCR was used to analyze the mRNA levels of relative chemokines and growth factors. Cardiac endothelial cell (CEC) recruitment was assessed via a transwell assay. Moreover, permanent ligation of the left anterior descending (LAD) coronary artery was performed to establish an acute myocardial infarction (AMI) mouse model. After cell transplantation, conventional echocardiography was conducted 1 and 4 weeks post-MI, and hearts were harvested for hematoxylin-and-eosin (HE) staining and immunofluorescence staining 1 week post-MI. Further evaluation of paracrine factor levels and administration of a neutralizing antibody (TIMP-1, TIMP-2, and CXCL12) or a CXCR4 antagonist (AMD3100) in MI hearts were performed to elucidate the mechanism involved in the chemotactic effect of Nestin+ BMSCs in vivo. RESULTS: Compared with Nestin- BMSCs, a greater proliferative capacity of Nestin+ BMSCs was observed, which further exhibited moderately high expression of chemokines instead of growth factors. More CEC recruitment in the Nestin+ BMSC-cocultured group was observed in vitro, while this effect was obviously abolished after treatment with neutralizing antibodies against TIMP-1, TIMP-2, or CXCL12, and more importantly, blocking the CXCL12/CXCR4 axis with a AMD3100 significantly reduced the chemotactic effect of Nestin+ BMSCs. After transplantation into mice exposed to myocardial infarction (MI), Nestin+ BMSC-treated mice showed significantly improved survival and left ventricular function compared with Nestin- BMSC-treated mice. Moreover, endogenous CECs were markedly increased, and chemokine levels were significantly higher, in the infarcted border zone with Nestin+ BMSC treatment. Meanwhile, neutralization of each TIMP-1, TIMP-2, or CXCL12 in vivo could reduce the left ventricular function at 1 and 4 weeks post-MI; importantly, the combined use of these three neutralizing antibodies could make a higher significance on cardiac function. Finally, blocking the CXCL12/CXCR4 axis with AMD3100 significantly reduced the left ventricular function and greatly inhibited Nestin+ BMSC-induced CEC chemotaxis in vivo. CONCLUSIONS: These results suggest that Nestin+ BMSC transplantation can improve cardiac function in an AMI model by recruiting resident CECs to the infarcted border region via the CXCL12/CXCR4 chemokine pathway. And we demonstrated that Nestin+BMSC-secreted TIMP-1/2 enhances CXCL12(SDF1α)/CXCR4 axis-driven migration of endogenous Sca-1+ endothelial cells in ischemic heart post-AMI. Taken together, our results show that Nestin is a useful marker for the identification of functional BMSCs and indicate that Nestin+ BMSCs could be a better therapeutic candidate for cardiac repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Nestina/genética , Animais , Anticorpos Neutralizantes/farmacologia , Benzilaminas , Osso e Ossos/citologia , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/genética , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Ciclamos , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , RNA Mensageiro/genética , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Inibidor Tecidual de Metaloproteinase-1/antagonistas & inibidores , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/antagonistas & inibidores , Inibidor Tecidual de Metaloproteinase-2/genética
7.
Expert Opin Ther Targets ; 19(5): 675-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25547779

RESUMO

INTRODUCTION: Fibroblast growth factor 19 (FGF19) is a member of the hormone-like FGF family and has activity as an ileum-derived postprandial hormone. It shares high binding affinity with ß-Klotho and together with the FGF receptor (FGFR) 4, is predominantly targeted to the liver. The main function of FGF19 in metabolism is the negative control of bile acid synthesis, promotion of glycogen synthesis, lipid metabolism and protein synthesis. AREAS COVERED: Drawing on in vitro and in vivo studies, this review discusses FGF19 and some underlying mechanisms of action of FGF19 as an endocrine hormone in several liver diseases. The molecular pathway of the FGF19-FGFR4 axis in non-alcoholic liver disease and hepatocellular carcinoma are discussed. Furthermore, definition of function and pharmacological effects of FGF19 for liver disease are also presented. EXPERT OPINION: A series of studies have highlighted a crucial role of FGF19 in liver disease. However, the conclusions of these studies are partly paradoxical and controversial. An understanding of the underlying biological mechanisms which may explain inconsistent findings is especially important for consideration of potential biomarker strategies and an exploration of the putative therapeutic efficacy of FGF19 for human liver disease.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Hepatopatias/fisiopatologia , Terapia de Alvo Molecular , Animais , Biomarcadores/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Humanos , Hepatopatias/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA