Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1389173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745666

RESUMO

Tumor immunotherapy is a promising approach for addressing the limitations of conventional tumor treatments, such as chemotherapy and radiotherapy, which often have side effects and fail to prevent recurrence and metastasis. However, the effectiveness and sustainability of immune activation in tumor immunotherapy remain challenging. Tumor immunogenic cell death, characterized by the release of immunogenic substances, damage associated molecular patterns (DAMPs), and tumor associated antigens, from dying tumor cells (DTCs), offers a potential solution. By enhancing the immunogenicity of DTCs through the inclusion of more immunogenic antigens and stimulating factors, immunogenic cell death (ICD) based cancer vaccines can be developed as a powerful tool for immunotherapy. Integrating ICD nanoinducers into conventional treatments like chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, and radiotherapy presents a novel strategy to enhance treatment efficacy and potentially improve patient outcomes. Preclinical research has identified numerous potential ICD inducers. However, effectively translating these findings into clinically relevant applications remains a critical challenge. This review aims to contribute to this endeavor by providing valuable insights into the in vitro preparation of ICD-based cancer vaccines. We explored established tools for ICD induction, followed by an exploration of personalized ICD induction strategies and vaccine designs. By sharing this knowledge, we hope to stimulate further development and advancement in the field of ICD-based cancer vaccines.


Assuntos
Vacinas Anticâncer , Morte Celular Imunogênica , Neoplasias , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/terapia , Animais , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia
2.
Adv Healthc Mater ; 12(17): e2300315, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848378

RESUMO

Osteoarthritis is a degenerative disorder that can severely affect joints, and new treatment strategies are urgently needed. Administration of mesenchymal stem cell (MSC)-derived exosomes is a promising therapeutic strategy in osteoarthritis treatment. However, the poor yield of exosomes is an obstacle to the use of this modality in the clinic. Herein, a promising strategy is developed to fabricate high-yield exosome-mimicking MSC-derived nanovesicles (MSC-NVs) with enhanced regenerative and anti-inflammatory capabilities. MSC-NVs are prepared using an extrusion approach and are found to increase chondrocyte and human bone marrow MSC differentiation, proliferation, and migration, in addition to inducing M2 macrophage polarization. Furthermore, gelatin methacryloyl (GelMA) hydrogels loaded with MSC-NVs (GelMA-NVs) are formulated, which exhibit sustained release of MSC-NVs and are shown to be biocompatible with excellent mechanical properties. In a mouse osteoarthritis model constructed by surgical destabilization of the medial meniscus (DMM), GelMA-NVs effectively ameliorate osteoarthritis severity, reduce the secretion of catabolic factors, and enhance matrix synthesis. Furthermore, GelMA-NVs induce M2 macrophage polarization and inflammatory response inhibition in vivo. The findings demonstrate that GelMA-NVs hold promise for osteoarthritis treatment through modulation of chondrogenesis and macrophage polarization.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Condrogênese , Osteoartrite/terapia , Gelatina/farmacologia , Modelos Animais de Doenças , Macrófagos
3.
Acta Pharm Sin B ; 12(7): 3124-3138, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865102

RESUMO

Tumor-associated macrophages (TAMs), one of the dominating constituents of tumor microenvironment, are important contributors to cancer progression and treatment resistance. Therefore, regulation of TAMs polarization from M2 phenotype towards M1 phenotype has emerged as a new strategy for tumor immunotherapy. Herein, we successfully initiated antitumor immunotherapy by inhibiting TAMs M2 polarization via autophagy intervention with polyethylene glycol-conjugated gold nanoparticles (PEG-AuNPs). PEG-AuNPs suppressed TAMs M2 polarization in both in vitro and in vivo models, elicited antitumor immunotherapy and inhibited subcutaneous tumor growth in mice. As demonstrated by the mRFP-GFP-LC3 assay and analyzing the autophagy-related proteins (LC3, beclin1 and P62), PEG-AuNPs induced autophagic flux inhibition in TAMs, which is attributed to the PEG-AuNPs induced lysosome alkalization and membrane permeabilization. Besides, TAMs were prone to polarize towards M2 phenotype following autophagy activation, whereas inhibition of autophagic flux could reduce the M2 polarization of TAMs. Our results revealed a mechanism underlying PEG-AuNPs induced antitumor immunotherapy, where PEG-AuNPs reduce TAMs M2 polarization via induction of lysosome dysfunction and autophagic flux inhibition. This study elucidated the biological effects of nanomaterials on TAMs polarization and provided insight into harnessing the intrinsic immunomodulation capacity of nanomaterials for effective cancer treatment.

4.
Front Oncol ; 12: 1101823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761427

RESUMO

Gastrointestinal cancer is one of the most common malignancies with relatively high morbidity and mortality. Exosomes are nanosized extracellular vesicles derived from most cells and widely distributed in body fluids. They are natural endogenous nanocarriers with low immunogenicity, high biocompatibility, and natural targeting, and can transport lipids, proteins, DNA, and RNA. Exosomes contain DNA, RNA, proteins, lipids, and other bioactive components, which can play a role in information transmission and regulation of cellular physiological and pathological processes during the progression of gastrointestinal cancer. In this paper, the role of exosomes in gastrointestinal cancers is briefly reviewed, with emphasis on the application of exosomes as drug delivery systems for gastrointestinal cancers. Finally, the challenges faced by exosome-based drug delivery systems are discussed.

5.
Int J Nanomedicine ; 16: 1553-1564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658783

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Most current therapeutic strategies primarily include localized treatment, lacking effective systemic strategies. Meanwhile, recent studies have suggested that RNA vaccines can effectively activate antigen-presenting cells (APCs) and lymphocytes to produce a strong systemic immune response and inhibit tumor growth. However, tumor vaccines loaded with a single tumor antigen may induce immunosuppression and immune evasion, while identifying tumor-specific antigens can require expensive and laborious procedures. Therefore, the use of whole tumor cell antigens are currently considered to be promising, potentially effective, methods. Previously, we developed a targeted liposome-polycation-DNA (LPD) complex nanoparticle that possess a small size, high RNA encapsulation efficiency, and superior serum stability. These particles were found to successfully deliver RNA to tumor sites. In the current study, we encapsulated total tumor-derived RNA in lipid nanoparticles (LNPs) to target dendritic cells (DCs) to incite expeditious and robust anti-tumor immunity. METHODS: Total tumor-derived RNA was extracted from liver cancer cells (Hepa1-6 cells). LNPs loaded with tumor RNA were then prepared thin-film hydration method. The ability of RNA LNPs to induce DC maturation, cytotoxicity, and anti-tumor activity, was investigated in vitro and in vivo. RESULTS: The average particle size of LNPs and RNA LNPs was 102.22 ± 4.05 nm and 209.68 ± 6.14 nm, respectively, while the zeta potential was 29.97 ± 0.61 mV and 42.03 ± 0.42 mV, respectively. Both LNPs and RNA LNP vaccines exhibited good distribution and stability. In vitro, RNA LNP vaccines were capable of promoting DC maturation and inducing T lymphocytes to kill Hepa1-6 cells. In vivo, RNA LNP vaccines effectively prevent and inhibit HCC growth. CONCLUSION: RNA LNPs may serve as an effective antigen specific vaccine to induce anti-tumor immunity for HCC.


Assuntos
Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Imunoterapia , Lipídeos/química , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Nanopartículas/química , RNA Neoplásico/metabolismo , Animais , Vacinas Anticâncer/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Tamanho da Partícula , Linfócitos T/imunologia
6.
Int J Nanomedicine ; 15: 5333-5344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801692

RESUMO

PURPOSE: Cabazitaxel (CBZ) is a new taxane-based antitumor drug approved by the FDA for the treatment of prostate cancer, especially for patients with advanced prostate cancer for whom docetaxel is ineffective or causes aggravation. However, Tween 80 injection can cause serious allergic reactions, and CBZ itself has strong toxicity, adverse reactions, and poor tumor selectivity, which greatly limits its clinical applications. Therefore, the CBZ-loaded bovine serum albumin nanoparticles (CBZ-BSA-Gd-NPs) were developed to overcome the allergenic response of Tween 80 and realize the integration of diagnosis and treatment. METHODS: CBZ-BSA-Gd-NPs were prepared by the biomineralization method. The characterization, magnetic resonance imaging (MRI), safety, and antitumor activity of the nanoparticles were evaluated in vitro and in vivo. RESULTS: The prepared nanoparticles were uniform in size (166 nm), with good MRI performance and stability over 24 h. Compared with CBZ-Tween 80 injection, CBZ-BSA-Gd-NPs showed much lower hemolysis, similar tumor inhibition, and enhanced cellular uptake in vitro. The pharmacokinetic behavior of CBZ-BSA-Gd-NPs in rats showed that the retention time of the nanoparticles was prolonged, the clearance rate decreased, and the area under the drug-time curve increased. The distribution of CBZ-BSA-Gd-NPs in nude mice was characterized by UPLC-MS/MS and MRI, and the results showed that CBZ-BSA-Gd-NPs could effectively target tumor tissues with reduced distribution in the heart, liver, spleen, lungs, and kidneys compared with CBZ-Tween 80, which indicated that CBZ-BSA-Gd-NPs not only had a passive targeting effect on tumor tissue but also achieved the integration of diagnosis and treatment. In vivo, CBZ-BSA-Gd-NPs showed improved tumor inhibitory effect with a safer profile. CONCLUSION: In summary, CBZ-BSA-Gd-NPs can serve as an effective therapeutic drug carrier to deliver CBZ into prostate cancer, and realize the integration of diagnosis and therapy.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Soroalbumina Bovina/administração & dosagem , Taxoides/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cromatografia Líquida , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Docetaxel , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neoplasias da Próstata/diagnóstico por imagem , Ratos Sprague-Dawley , Soroalbumina Bovina/farmacocinética , Espectrometria de Massas em Tandem , Taxoides/farmacocinética , Distribuição Tecidual
7.
Carbohydr Polym ; 213: 411-418, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879686

RESUMO

Despite some efforts have been made in the research of supramolecular hyperbranched polymers (SHPs) self-assemblies, the study which has not been consideration to date is the influence of incoming stimuli-responsive polymer chain on their self-assembly property undergo outer stimuli. The introduction of stimuli-responsive segments which could maintain their hydrophilic property are expected to affect the self-assembly behaviour of SHPs and expand their further biomedical application. In this paper, AB2-type macromolecular monomer, LA-(CD-PDMA)2, which consisted one lithocholic acid (LA) and two ß-cyclodextrin terminated poly(2-(dimethylamino)ethyl methacrylate) segments (CD-PDMA) was synthesized. LA-(CD-PDMA)2 based SHP were obtained based on the host-guest inclusion interactions of CD/LA moietes and with PDMA as pH-responsive hydrophilic chains. As a control to study the influence of incoming PDMA chains, both LA-(CD-PDMA)2 based SHPs-1 and LA-CD2 based SHPs-2 self-assemblies were comparatively investiged through 2D 1H NMR ROESY, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results suggested that except for the higher drug loading efficiency LA-(CD-PDMA)2 based SHPs-1 pocessing, the release rates of SHPs-1 increased notably at pH 5.0 than that of pH 7.4 due to the repulsion and stretch of protonated PDMA chains while the release rates of SHPs-2 showed no obvious difference. Finally, basic cell experiments demonstrated that the SHPs based self-assemblies can be internalized into cancer cells, indicating their potential application in the drug delivery field.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Polímeros/farmacologia , beta-Ciclodextrinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ácido Litocólico/química , Ácido Litocólico/farmacologia , Células MCF-7 , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Conformação Molecular , Imagem Óptica , Polímeros/síntese química , Polímeros/química , beta-Ciclodextrinas/química
8.
Int J Nanomedicine ; 14: 9199-9216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063706

RESUMO

PURPOSE: Conventional chemotherapy is hampered by the presence of breast cancer stem cells (BCSCs). It is crucial to eradicating both the bulky breast cancer cells and BCSCs, using a combination of conventional chemotherapy and anti-CSCs drugs. However, the synergistic ratio of drug combinations cannot be easily maintained in vivo. In our previous studies, we demonstrated that the simultaneous delivery of two drugs via nanoliposomes could maintain the synergistic drug ratio for 12 h in vivo. However, nanoliposomes have the disadvantage of quick drug release, which makes it difficult to maintain the synergistic drug ratio for a long time. Herein, we developed a co-delivery system for docetaxel (DTX)-a first-line chemotherapy drug for breast cancer-and salinomycin (SAL)-an anti-BCSCs drug-in rigid nanoparticles constituted of polylactide-co-glycolide/D-alpha-tocopherol polyethylene glycol 1000 succinate (PLGA/TPGS). METHODS: Nanoparticles loaded with SAL and DTX at the optimized ratio (NSD) were prepared by the nanoprecipitation method. The characterization, cellular uptake, and cytotoxicity of nanoparticles were investigated in vitro, and the pharmacokinetics, tissue distribution, antitumor and anti-CSCs activity of nanoparticles were evaluated in vivo. RESULTS: We demonstrated that a SAL/DTX molar ratio of 1:1 was synergistic in MCF-7 cells and MCF-7-MS. Moreover, the enhanced internalization of nanoparticles was observed in MCF-7 cells and MCF-7-MS. Furthermore, the cytotoxicity of NSD against both MCF-7 cells and MCF-7-MS was stronger than the cytotoxicity of any single treatment in vitro. Significantly, NSD could prolong the circulation time and maintain the synergistic ratio of SAL to DTX in vivo for 24 h, thus exhibiting superior tumor targeting and anti-tumor activity compared to other treatments. CONCLUSION: Co-encapsulation of SAL and DTX in PLGA/TPGS nanoparticles could maintain the synergistic ratio of drugs in vivo in a better manner; thus, providing a promising strategy for synergistic inhibition of breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Docetaxel/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Piranos/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias da Mama/patologia , Docetaxel/farmacocinética , Liberação Controlada de Fármacos , Feminino , Humanos , Lipossomos/química , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Piranos/farmacocinética , Ratos Sprague-Dawley , Distribuição Tecidual , Vitamina E/química , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Anticancer Drugs ; 30(1): 72-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239423

RESUMO

Although salinomycin sodium (SS) has shown in-vitro potential to inhibit cancer stem cell growth and development, its low water solubility makes it a poor candidate as an oral chemotherapeutic agent. To improve the bioavailability of SS, SS was encapsulated here using D-α-tocopherol polyethylene glycol succinate (TPGS)-emulsified poly(lactic-co-glycolic acid) (PLGA) nanoparticles and compared with its parent SS in terms of absorption, pharmacokinetics, and efficacy in suppressing nasopharyngeal carcinomas stem cells. The pharmacokinetics of SS and salinomycin sodium-loaded D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles (SLN) prepared by nanoprecipitation were analyzed in-vivo by timed-interval blood sampling and oral administration of SS and SLN to rats. Sensitive liquid chromatography-mass spectrometry (LC-MS) was developed to quantify plasma drug concentrations. SS and SLN transport in Caco-2 cells was also investigated. The therapeutic efficacy of SS and SLN against cancer stem cells was determined by orally administering the drugs to mice bearing CNE1 and CNE2 nasopharyngeal carcinoma xenografts and then evaluating CD133 cell proportions and tumorsphere formation. The in-vivo trial with rats showed that the Cmax, AUC(0-t), and Tmax for orally administered SLN were all significantly higher than those for SS (P<0.05). These findings were corroborated by a Caco-2 cell Transwell assay showing that relative SLN absorption was greater than that of SS on the basis of their apparent permeability coefficients (Papp). Significantly, therapeutic SLN efficacy against nasopharyngeal carcinoma stem cells was superior to that of SS. TPGS-emulsified PLGA nanoparticles effectively increase SS solubility and bioavailability. SLN is, therefore, promising as an oral chemotherapeutic agent against cancer stem cells.


Assuntos
Nanopartículas/administração & dosagem , Piranos/administração & dosagem , Piranos/farmacocinética , alfa-Tocoferol/administração & dosagem , Animais , Células CACO-2 , Emulsões/administração & dosagem , Emulsões/farmacocinética , Emulsões/farmacologia , Humanos , Absorção Intestinal , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Piranos/sangue , Piranos/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Succinatos/administração & dosagem , Succinatos/farmacocinética , alfa-Tocoferol/farmacocinética
10.
Int J Nanomedicine ; 13: 6855-6870, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498347

RESUMO

PURPOSE: Liver cancer is the third leading cause of cancer-related deaths worldwide. Liver cancer stem cells (LCSCs) are a subpopulation of cancer cells that are responsible for the initiation, progression, drug resistance, recurrence, and metastasis of liver cancer. Recent studies have suggested that the eradication of both LCSCs and liver cancer cells is necessary because the conversion of cancer stem cells (CSCs) to cancer cells occasionally occurs. As ATP-binding cassette (ABC) transporters are overexpressed in both CSCs and cancer cells, combined therapies using ABC transporter inhibitors and chemotherapy drugs could show superior therapeutic efficacy in liver cancer. In this study, we developed poly(lactide-co-glycolide)/d-alpha-tocopherol polyethylene glycol 1000 succinate nanoparticles to accomplish the simultaneous delivery of an optimized ratio of doxorubicin (DOX) and elacridar (ELC) to target both LCSCs and liver cancer cells. METHODS: Median-effect analysis was used for screening of DOX and ELC for synergy in liver cancer cells (HepG2 cells) and LCSCs (HepG2 tumor sphere [HepG2-TS]). Then, nanoparticles loaded with DOX and ELC at the optimized ratio (NDEs) were prepared by nanoprecipitation method. The cytotoxicity and colony and tumor sphere formation ability of nanoparticles were investigated in vitro, and the tissue distribution and antitumor activity of nanoparticles were evaluated in vivo. RESULTS: We demonstrated that a DOX/ELC molar ratio of 1:1 was synergistic in HepG2 cells and HepG2-TS. NDEs were shown to exhibit significantly increased cytotoxic effects against both HepG2 and HepG2-TS compared with DOX-loaded nanoparticles (NDs) or ELC-loaded nanoparticles (NEs) in vitro. In vivo studies demonstrated that the nanoparticles exhibited better tumor targeting, with NDE showing the strongest antitumor activity with lower systemic toxicity. CONCLUSION: These results suggested that NDE represented a promising combination therapy against liver cancer by targeting both liver cancer cells and CSCs.


Assuntos
Acridinas/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/terapia , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Transplante de Células-Tronco , Tetra-Hidroisoquinolinas/administração & dosagem , Vitamina E/química , Acridinas/farmacocinética , Acridinas/farmacologia , Acridinas/uso terapêutico , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Morte Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia , Tetra-Hidroisoquinolinas/farmacocinética , Tetra-Hidroisoquinolinas/farmacologia , Tetra-Hidroisoquinolinas/uso terapêutico , Distribuição Tecidual , Ensaio Tumoral de Célula-Tronco
11.
Int J Nanomedicine ; 13: 1327-1339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563790

RESUMO

PURPOSE: Breast cancer is the most common cancer among women. Pemetrexed, a new generation antifolate drug, is one of the primary treatments for breast cancer. However, multidrug resistance (MDR) in breast cancer greatly hampers the therapeutic efficacy of chemotherapies such as pemetrexed. Nanomedicine is emerging as a promising alternative technique to overcome cancer MDR. Thus, pemetrexed-loaded d-alpha tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) liposomes (liposomal pemetrexed) were developed as a strategy to overcome MDR to pemetrexed in breast cancer. MATERIALS AND METHODS: Liposomal pemetrexed was developed using the calcium acetate gradient method. The cytotoxic effects, apoptosis-inducing activity, in vivo distribution, and antitumor activity of liposomal pemetrexed were investigated. RESULTS: Liposomal pemetrexed was small in size (160.77 nm), with a small polydispersity of <0.1. The encapsulation efficacy of liposomal pemetrexed was 63.5%, which is rather high for water-soluble drugs in liposomes. The IC50 of liposomal pemetrexed following treatment with MDR breast cancer cells (MCF-7 cells overexpressing ABCC5) was 2.6-fold more effective than pemetrexed. The in vivo biodistribution study showed that the liposomes significantly accumulated in tumors 24 h after injection. The antitumor assay in mice bearing MDR breast cancer xenograft tumors confirmed the superior antitumor activity of liposomal pemetrexed over pemetrexed. It was also found that the improved therapeutic effect of liposomal pemetrexed may be attributed to apoptosis through both extrinsic and intrinsic pathways. CONCLUSION: Liposomal pemetrexed represents a potential therapeutic approach for overcoming breast cancer MDR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Pemetrexede/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Lipossomos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Pemetrexede/farmacologia , Distribuição Tecidual , Transfecção
12.
Nanomedicine ; 14(6): 1949-1961, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29045824

RESUMO

HAb18G/CD147, an important marker in the progression of hepatocellular carcinoma (HCC), is highly expressed on the surface of HCC cells. To increase the therapeutic efficacy of Doxil (PEGylated liposomal doxorubicin) against HCC, we constructed CD147-targeted doxorubicin-loaded immunoliposomes (Anti-CD147 ILs-DOX) by conjugating F(ab')2 of a CD147-specific monoclonal antibody to DSPE-PEG-MAL, and then inserted the antibody-conjugated polymer to Doxil. Anti-CD147 ILs-DOX delivered DOX to CD147-overexpressing HCC cells specifically and efficiently in vitro and in vivo, resulting in enhanced therapeutic effects than non-targeted controls. Strikingly, Anti-CD147 ILs-DOX reduced the CD133-positive fraction of HCC cells, suggesting its potential in reducing the number of HCC stem cells. Pharmacokinetic and biodistribution studies of Anti-CD147 ILs-DOX confirmed its long circulation time and efficient accumulation in tumors. The superior antitumor effects of Anti-CD147 ILs-DOX than other treatments were demonstrated in both HCC cells and patient-derived HCC xenograft models. Anti-CD147 ILs-DOX represent a novel approach for targeted HCC therapy.


Assuntos
Anticorpos Monoclonais/química , Basigina/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Imunoconjugados/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nanomedicine (Lond) ; 12(9): 1025-1042, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28440698

RESUMO

AIM: Salinomycin (SAL)-loaded PEG-ceramide nanomicelles (SCM) were prepared to target both liver cancer cells and cancer stem cells. MATERIALS & METHODS: The synergistic ratio of SAL/PEG-ceramide was evaluated to prepare SCM, and the antitumor activity of SCM was examined both in vitro and in vivo. RESULTS: SAL/PEG-ceramide molar ratio of 1:4 was chosen as the synergistic ratio, and SCM showed superior cytotoxic effect and increased apoptosis-inducing activity in both liver cancer cells and cancer stem cells. In vivo, SCM showed the best tumor inhibitory effect with a safety profile. CONCLUSION: Thus, PEG-ceramide nanomicelles could serve as an effective and safe therapeutic drug carrier to deliver SAL into liver cancer, opening up the avenue of using PEG-ceramide as therapeutic drug carriers.


Assuntos
Antineoplásicos/farmacologia , Ceramidas/farmacologia , Portadores de Fármacos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Piranos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Ceramidas/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sinergismo Farmacológico , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Polietilenoglicóis/uso terapêutico , Piranos/uso terapêutico , Ratos Sprague-Dawley
14.
World J Gastrointest Oncol ; 8(10): 735-744, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27795813

RESUMO

Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.

15.
Nanomedicine (Lond) ; 11(23): 3117-3137, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27819530

RESUMO

AIM: The application of cationic liposomes (CLs) as nonviral vectors is hampered by their cellular toxicity. Thus we aim to investigate the mechanisms underlying the cellular toxicity of CLs. MATERIALS & METHODS: The effect of CLs on the autophagic flux, autophagosome-lysosome fusion, lysosome membrane permeabilization and cell necrosis of liver cells was investigated. RESULTS & CONCLUSION: Our results reveal a novel mechanism of CL-induced cell necrosis involving the induction of lysosome membrane permeabilization and late-stage autophagic flux inhibition that resulted in cytoplasmic release of cathepsin B, mitochondrial dysfunction and reactive oxygen species production, which are the key mediators of cell necrosis. Our study is important for revealing the cellular toxicity of CLs and designing safer gene delivery systems.


Assuntos
Autofagia/efeitos dos fármacos , Lipossomos/química , Lisossomos/efeitos dos fármacos , Animais , Autofagia/fisiologia , Catepsina B/metabolismo , Cátions , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/efeitos adversos , Liberação Controlada de Fármacos , Terapia Genética , Humanos , Lipossomos/toxicidade , Lisossomos/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Necrose/induzido quimicamente , Permeabilidade , Espécies Reativas de Oxigênio/metabolismo
16.
Nanomedicine (Lond) ; 11(19): 2565-2579, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27647449

RESUMO

AIM: To develop salinomycin-loaded nanoliposomes (SLN), doxorubicin-loaded nanoliposomes (DLN) and nanoliposomes codelivering salinomycin and doxorubicin (SDLN) to target both liver cancer cells and cancer stem cells. MATERIALS & METHODS: The characterization and antitumor activity of SLN, DLN and SDLN were evaluated. RESULTS & CONCLUSION: The doxorubicin/salinomycin sodium mole ratio of 1:1 had the best synergistic combination index value, and was chosen as the drug ratio in SDLN. SDLN could maintain the drug ratio between 1:1 and 3:1 in 12 h in vivo. SDLN and SLN + DLN showed the best tumor inhibitory rate, and could significantly decrease the percentage of liver cancer stem cells in vivo. SDLN and SLN + DLN may serve as an effective approach to treat liver cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Lipossomos/química , Nanocápsulas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Apoptose , Carcinoma Hepatocelular/patologia , Sobrevivência Celular , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , Tamanho da Partícula , Piranos/administração & dosagem , Propriedades de Superfície
17.
Int J Nanomedicine ; 11: 3765-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540290

RESUMO

Due to the impermeability of the blood-brain barrier and the nonselective distribution of drugs in the brain, the therapeutic access to intractable neurological disorders is challenging. In this study, dual brain-targeting polymersomes (POs) functionalized by transferrin and Tet-1 peptide (Tf/Tet-1-POs) promoted the transportation of curcumin into the brain and provided neuroprotection. The modification of the ligands that bind to the surface of POs was revealed by X-ray photoelectron spectroscopy analysis. The cell uptake of a coculture model of mouse brain capillary endothelial cells with neurons showed that the Tf/Tet-1-POs had significant transportation properties and possessed affinity for neurons. The pharmacokinetic analysis showed that the blood-brain barrier permeability-surface efficiency of the Tf/Tet-1-POs was 0.28 mL/h/g and that the brain tissue uptake rate (% ID/g) was 0.08, which were significant compared with the controls (P<0.05). The curcumin-encapsulated Tf/Tet-1-POs provided neuroprotection and ameliorated cognitive dysfunction in intrahippocampal amyloid-ß1-42-injected mice. These results suggest that the dual brain-targeting POs are more capable of drug delivery to the brain that can be exploited as a multiple noninvasive vehicle for targeting therapeutics.


Assuntos
Peptídeos beta-Amiloides/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Hipocampo/metabolismo , Hipocampo/patologia , Fragmentos de Peptídeos/administração & dosagem , Polímeros/química , Peptídeos beta-Amiloides/toxicidade , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Curcumina/farmacocinética , Curcumina/farmacologia , Hipocampo/fisiopatologia , Ligantes , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neuroproteção/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Peptídeos/química , Peptídeos/farmacologia , Espectroscopia Fotoeletrônica , Distribuição Tecidual , Transferrina/metabolismo
18.
Nanomedicine (Lond) ; 11(14): 1831-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27391366

RESUMO

AIM: To improve the suboptimal therapeutic efficacy of salinomycin (SAL) toward liver cancer cells using chloroquine (CQ) combination by the liposomes co-delivering SAL and CQ (SCNL). MATERIALS & METHODS: The synergy of these two drugs was evaluated in liver cancer cells (HepG2) and liver cancer stem cells (LCSCs) by median-effect analysis. SCNL with optimized ratio were developed. The cytotoxic effect and basal autophagy flux (measure of autophagic degradation activity) of various formulations were evaluated. RESULTS & CONCLUSION: CQ could significantly increase the cytotoxic effect of SAL in HepG2 cells, but not in HepG2-LCSCs, due to the greater basal autophagy flux in HepG2 cells. This combination therapy is promising for liver cancer treatment by eradicating liver cancer cells and LCSCs.


Assuntos
Anti-Infecciosos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cloroquina/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Piranos/administração & dosagem , Anti-Infecciosos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Sinergismo Farmacológico , Células Hep G2 , Humanos , Lipossomos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Piranos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA