Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901947

RESUMO

Secretion and efflux of oxalic acid from roots is an important aluminum detoxification mechanism for various plants; however, how this process is completed remains unclear. In this study, the candidate oxalate transporter gene AtOT, encoding 287 amino acids, was cloned and identified from Arabidopsis thaliana. AtOT was upregulated in response to aluminum stress at the transcriptional level, which was closely related to aluminum treatment concentration and time. The root growth of Arabidopsis was inhibited after knocking out AtOT, and this effect was amplified by aluminum stress. Yeast cells expressing AtOT enhanced oxalic acid resistance and aluminum tolerance, which was closely correlated with the secretion of oxalic acid by membrane vesicle transport. Collectively, these results underline an external exclusion mechanism of oxalate involving AtOT to enhance oxalic acid resistance and aluminum tolerance.


Assuntos
Arabidopsis , Arabidopsis/genética , Alumínio/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Ácido Oxálico/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
2.
Sci Rep ; 8(1): 331, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321580

RESUMO

Papain-like cysteine proteases (PLCPs) are a class of proteolytic enzymes involved in many plant processes. Compared with the extensive research in Arabidopsis thaliana, little is known in castor bean (Ricinus communis) and physic nut (Jatropha curcas), two Euphorbiaceous plants without any recent whole-genome duplication. In this study, a total of 26 or 23 PLCP genes were identified from the genomes of castor bean and physic nut respectively, which can be divided into nine subfamilies based on the phylogenetic analysis: RD21, CEP, XCP, XBCP3, THI, SAG12, RD19, ALP and CTB. Although most of them harbor orthologs in Arabidopsis, several members in subfamilies RD21, CEP, XBCP3 and SAG12 form new groups or subgroups as observed in other species, suggesting specific gene loss occurred in Arabidopsis. Recent gene duplicates were also identified in these two species, but they are limited to the SAG12 subfamily and were all derived from local duplication. Expression profiling revealed diverse patterns of different family members over various tissues. Furthermore, the evolution characteristics of PLCP genes were also compared and discussed. Our findings provide a useful reference to characterize PLCP genes and investigate the family evolution in Euphorbiaceae and species beyond.


Assuntos
Jatropha/genética , Família Multigênica , Papaína/genética , Ricinus communis/genética , Análise de Sequência de DNA , Ricinus communis/classificação , Ricinus communis/enzimologia , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Jatropha/classificação , Jatropha/enzimologia , Papaína/metabolismo , Filogenia , Transcriptoma
3.
Planta ; 246(5): 999-1018, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28752264

RESUMO

MAIN CONCLUSION: 43 HbPLCPs representing nine subfamilies or 20 orthologous groups were found in rubber, where paralogs were resulted from the recent WGD and local duplication. Several senescence-associated genes were also identified. Papain-like cysteine proteases (PLCPs) comprise a large family of proteolytic enzymes involved in plant growth and development, seed germination, organ senescence, immunity, and stress response. Despite their importance and the extensive research in the model plant Arabidopsis thaliana, little information is available on rubber tree (Hevea brasiliensis), a rubber-producing plant of the Euphorbiaceae family. This study performed a genome-wide identification of PLCP family genes in rubber, resulting in a relatively high number of 43 members. The phylogenetic analysis assigned these genes into nine subfamilies, i.e., RD21 (6), CEP (4), XCP (4), XBCP3 (2), THI (1), SAG12 (18), RD19 (4), ALP (2), and CTB (2). Most of them were shown to have orthologs in Arabidopsis; however, several members in SAG12, CEP and XBCP3 subfamilies form new groups as observed in other core eudicots such as Manihot esculenta, Ricinus communis, Populus trichocarpa, and Vitis vinifera. Based on an expert sequence comparison, 20 orthologous groups (OGs) were proposed for core eudicots, and rubber paralogs were shown to be resulted from the recent whole-genome duplication (WGD) as well as local duplication. Transcriptional profiling showed distinct expression pattern of different members across various tissues, e.g., root, leaf, bark, laticifer, flower, and seed. By using the senescence-specific HbSAG12H1 as the indicator, the transcriptome of senescent rubber leaves was deeply sequenced and several senescence-associated PLCP genes were identified. Results obtained from this study provide valuable information for future functional analysis and utilization of PLCP genes in Hevea and other species.


Assuntos
Cisteína Proteases/genética , Genoma de Planta/genética , Hevea/enzimologia , Família Multigênica , Borracha/metabolismo , Transcriptoma , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genômica , Hevea/genética , Especificidade de Órgãos , Papaína/genética , Filogenia , Proteínas de Plantas/genética
4.
PLoS One ; 12(2): e0171725, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28166280

RESUMO

Arabidopsis thaliana SAG12, a senescence-specific gene encoding a cysteine protease, is widely used as a molecular marker for the study of leaf senescence. To date, its potential orthologues have been isolated from several plant species such as Brassica napus and Nicotiana tabacum. However, little information is available in rubber tree (Hevea brasiliensis), a rubber-producing plant of the Euphorbiaceae family. This study presents the identification of SAG12-like genes from the rubber tree genome. Results showed that an unexpected high number of 17 rubber orthologues with a single intron were found, contrasting the single copy with two introns in Arabidopsis. The gene expansion was also observed in another two Euphorbiaceae plants, castor bean (Ricinus communis) and physic nut (Jatropha curcas), both of which contain 8 orthologues. In accordance with no occurrence of recent whole-genome duplication (WGD) events, most duplicates in castor and physic nut were resulted from tandem duplications. In contrast, the duplicated HbSAG12H genes were derived from tandem duplications as well as the recent WGD. Expression analysis showed that most HbSAG12H genes were lowly expressed in examined tissues except for root and male flower. Furthermore, HbSAG12H1 exhibits a strictly senescence-associated expression pattern in rubber tree leaves, and thus can be used as a marker gene for the study of senescence mechanism in Hevea.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína Endopeptidases/genética , Cisteína Proteases/genética , Genoma de Planta , Hevea/genética , Família Multigênica , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/classificação , Proteínas de Arabidopsis/química , Biologia Computacional/métodos , Sequência Conservada , Cisteína Endopeptidases/química , Cisteína Proteases/química , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Hevea/classificação , Filogenia , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA