Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174029, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38944297

RESUMO

Trichloroethylene (TCE) is a common environmental pollutant and industrial chemical that has been associated with adverse health effects, especially on organ systems. The purpose of this review is to summarize the current findings on organ system damage caused by TCE exposure and the underlying mechanisms involved. Numerous studies have shown that TCE exposure may cause damage to multiple organ systems, mainly the skin, liver, kidney, and circulatory system. The mechanisms leading to TCE-induced organ system damage are complex and diverse. TCE is metabolized in vivo to reactive intermediates, through which TCE can induce oxidative stress, interfere with cell signaling pathways, and promote inflammatory responses. In addition, studies have shown that TCE interferes with DNA repair mechanisms, leading to genotoxicity and potentially carcinogenic effects. This review highlights the importance of understanding the deleterious effects of TCE exposure on organ systems and provides insights into the underlying mechanisms involved. Further research is needed to elucidate the full range of organ system damage caused by TCE and to develop effective prevention and treatment strategies.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Tricloroetileno , Tricloroetileno/toxicidade , Humanos , Poluentes Ambientais/toxicidade , Exposição Ambiental/efeitos adversos , Estresse Oxidativo
2.
Ecotoxicol Environ Saf ; 278: 116433, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714087

RESUMO

Trichloroethylene (TCE), a widely distributed environmental chemical contaminant, is extensively dispersed throughout the environment. Individuals who are exposed to TCE may manifest occupational medicamentose-like dermatitis due to trichloroethylene (OMDT). Renal impairment typically manifests in the initial phase of OMDT and is intricately linked to the disease progression and patient outcomes. Although recombinant human tumor necrosis factor-α receptor II fusion protein (rh TNFR:Fc) has been employed in the clinical management of OMDT, there was no substantial improvement in renal function observed in patients following one week of treatment. This study primarily examined the mechanism of TNFα- and IFNγ-induced endothelial cells (ECs) PANoptosis in TCE-induced kidney injury and hypothesized that the synergistic effect of TNFα and IFNγ could be the key factor affecting the efficacy of rh TNFR:Fc therapy in OMDT patients. A TCE-sensitized mouse model was utilized in this study to investigate the effects of TNFα and IFNγ neutralizing antibodies on renal vascular endothelial cell PANoptosis. The gene of interferon regulatory factor 1 (IRF1) in human umbilical vein endothelial cells (HUVEC) was silenced by using small interfering RNA (siRNA), and the cells were then treated with TNFα and IFNγ recombinant protein to investigate the mechanism of TNFα combined with IFNγ-induced PANoptosis in HUVEC. The findings indicated that mice sensitized to TCE exhibited increased levels of PANoptosis-related markers in renal endothelial cells, and treatment with TNFα and IFNγ neutralizing antibodies resulted in a significant reduction in PANoptosis and improvement in renal function. In vitro experiments demonstrated that silencing IRF1 could reverse TNFα and IFNγ-induced PANoptosis in endothelial cells. These results suggest that the efficacy of rh TNFR:Fc may be influenced by TNFα and IFNγ-mediated PANoptosis in kidney vascular endothelial cells. The joint application of TNFα and IFNγ neutralizing antibody represented a solid alternative to existing therapeutics.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Fator Regulador 1 de Interferon , Interferon gama , Tricloroetileno , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Injúria Renal Aguda/induzido quimicamente , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator Regulador 1 de Interferon/metabolismo , Rim/efeitos dos fármacos , Tricloroetileno/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Feminino , Camundongos Endogâmicos BALB C
3.
Sci Total Environ ; 923: 171378, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447712

RESUMO

Trichloroethylene (TCE) is a common environmental contaminant that can cause a severe allergic reaction called TCE hypersensitivity syndrome, which often implicates the patient's kidneys. Our previous study revealed that C5b-9-induced tubular ferroptosis is involved in TCE-caused kidney damage. However, the study did not explain how tubule-specific C5b-9 causes free iron overload, a key event in ferroptosis. Here, we aimed to explore the role of NCOA4-mediated ferritinophagy in C5b-9-induced iron overload and ferroptosis in TCE-sensitized mice. Our results showed that TCE sensitization does not affect iron import or export, but does affect iron storage, causing ferritin degradation and free iron overload. In addition, mitochondrial ROS was upregulated, and these changes were blocked by C5b-9 inhibition. Interestingly, TCE-induced ferritin degradation and ferroptosis were significantly antagonized by the application of the mitochondrial ROS inhibitor, Mito-TEMPO. Moreover, all of these modes of action were further verified in C5b-9-attack signalling HK-2 cells. Further investigation demonstrated that C5b-9-upregulated mitochondrial ROS induced a marked increase in nuclear receptor coactivator 4 (NCOA4), a master regulator of ferritinophagy. In addition, the application of NCOA4 small interfering RNA not only significantly reversed ferritinophagy caused by C5b-9 but also reduced C5b-9-induced ferroptosis in HK-2 cells. Taken together, these results suggest that tubule-specific C5b-9 deposition activates NCOA4 through the upregulation of mitochondrial ROS, causing ferritin degradation and elevated free iron, which ultimately leads to tubular epithelial cell ferroptosis and kidney injury in TCE-sensitized mice.


Assuntos
Ferroptose , Sobrecarga de Ferro , Tricloroetileno , Animais , Camundongos , Humanos , Tricloroetileno/toxicidade , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ferro/toxicidade , Ferro/metabolismo , Ferritinas/metabolismo , Células Epiteliais
4.
J Ethnopharmacol ; 324: 117756, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38218503

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Wenzhong Bushen Formula (WZBSF) is a traditional Chinese medicine empirical formula known for its effects in tonifying qi, strengthening the spleen, warming the kidneys, promoting yang, regulating blood circulation, and balancing menstruation. Clinical evidence has demonstrated its significant efficacy in treating Diminished Ovarian Reserve (DOR) by improving ovarian reserves. However, the specific pharmacological mechanisms of WZBSF remain unclear. AIM OF THE STUDY: This study aims to investigate the mechanisms by which WZBSF improves ovarian reserve decline through network pharmacology and animal experiments. METHODS AND MATERIALS: WZBSF was analyzed using a dual UPLC-MS/MS and GC-MS platform. Effective components and targets of WZBSF were obtained from the TCMSP database and standardized using UniProt. Disease targets were collected from GeneCard, OMIM, PHARMGKB, and DisGeNET databases, with cross-referencing between the two sets of targets. A PPI protein interaction network was constructed using Cytoscape3.9.1 and STRING database, followed by KEGG and GO enrichment analysis using the Metascape database. Finally, an ovarian reserve decline model was established in mice, different doses of WZBSF were administered, and experimental validation was conducted through serum hormone detection, H&E staining, immunofluorescence (IF), immunohistochemistry (IHC), and Western blot analysis (WB). RESULTS: WZBSF shares 145 common targets with ovarian reserve decline. GO enrichment analysis revealed involvement in biological processes such as response to hormone stimulation and phosphatase binding, while KEGG analysis implicated pathways including the PI3K-AKT signaling pathway and FoxO signaling pathway. In mice with ovarian reserve decline, WZBSF restored weight gain rate, increased ovarian index, normalized estrous cycles, reversed serum hormone imbalances, restored various follicle counts, and improved ovarian morphology. Additionally, WZBSF reduced p-AKT and p-FOXO3a levels, preventing excessive activation of primordial follicles and maintaining ovarian reserve. CONCLUSION: WZBSF can ameliorate cyclophosphamide and busulfan-induced ovarian reserve decline, and its mechanism may be associated with the inhibition of the PI3K/AKT/FOXO3a signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Reserva Ovariana , Feminino , Animais , Camundongos , Farmacologia em Rede , Cromatografia Líquida , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Hormônios , Simulação de Acoplamento Molecular
5.
World Neurosurg ; 181: e655-e677, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898266

RESUMO

OBJECTIVE: A meta-analysis of randomized controlled trials was conducted to assess efficacy and safety of bilateral ultrasound-guided erector spinae plane block (ESPB) for postoperative analgesia in patients receiving spine surgery. METHODS: PubMed, Embase, and CENTRAL databases were searched by 2 reviewers independently to identify randomized controlled trials evaluating the efficacy of ultrasound-guided ESPB for pain management in patients undergoing spine surgery. For meta-analysis, mean difference (MD) and 95% confidence interval (CI) were selected for continuous data, and risk ratio (RR) and 95% CI were selected for dichotomous variables. RESULTS: A total of 25 randomized controlled trials including 1917 patients (873 in ESPB group and 874 in control group) were eligible for inclusion. At rest, ESPB was associated with significantly lower pain intensity at 0, 2, 4, 6, 8, 12, 24, and 48 hours compared with the control group. During movement, ESPB was associated with significantly lower pain intensity at 0, 4, 6, 8, 12, 24, and 48 hours compared with the control group. Significantly reduced opioid consumption (MD = -6.29, 95% CI [-8.16, 4.41], P < 0.001), prolonged time for first rescue analgesia (MD = 7.51, 95% CI [3.47, 11.54], P < 0.001), fewer patients needing rescue analgesia (RR = 0.34, 95% CI [0.28, 0.43], P < 0.0001), improved patient satisfaction (MD = 1.34, 95% CI [0.88, 1.80], P < 0.001), and shorter length of hospital stay (MD = -0.38, [95% CI -0.50, -0.26], P < 0.001) were demonstrated after use of ESPB. Additionally, ESPB was associated with decreased risks of any adverse event (RR = 0.51, 95% CI [0.43, 0.60], P < 0.001) and postoperative nausea and vomiting events (RR = 0.39, 95% CI [0.31, 0.49], P < 0.001). CONCLUSIONS: Ultrasound-guided ESPB is an effective adjunctive technique with good tolerability for multimodal analgesia in management of pain in patients undergoing spine surgery.


Assuntos
Analgesia , Bloqueio Nervoso , Humanos , Dor , Dor Pós-Operatória/tratamento farmacológico , Náusea e Vômito Pós-Operatórios , Ensaios Clínicos Controlados Aleatórios como Assunto , Ultrassonografia de Intervenção
6.
J Med Chem ; 66(18): 13028-13042, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703322

RESUMO

CARM1 is amplified or overexpressed in many cancer types, and its overexpression correlates with poor prognosis. Potent small-molecule inhibitors for CARM1 have been developed, but the cellular efficacy of the CARM1 inhibitors is limited. We herein report the development of the proteolysis targeting chimera (PROTAC) for CARM1, which contains a CARM1 ligand TP-064, a linker, and a VHL E3 ligase ligand. Compound 3b elicited potent cellular degradation activity (DC50 = 8 nM and Dmax > 95%) in a few hours. Compound 3b degraded CARM1 in VHL- and proteasome-dependent manner and was highly selective for CARM1 over other protein arginine methyltransferases. CARM1 degradation by 3b resulted in potent downregulation of CARM1 substrate methylation and inhibition of cancer cell migration in cell-based assays. Thus, CARM1 PROTACs can be used to interrogate CARM1's cellular functions and potentially be developed as therapeutic agents for targeting CARM1-driven cancers.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteína-Arginina N-Metiltransferases , Ligantes , Regulação para Baixo , Complexo de Endopeptidases do Proteassoma/metabolismo , Arginina
7.
Int J Biol Macromol ; 252: 126584, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648137

RESUMO

Cellulose graft copolymers having well-defined structures could incorporate the characteristics of both the cellulose skeleton and side chains, providing a new method for the preparation functionalised cellulose derivatives. Herein, a series of multifunctional cellulose grafted, alternating 3,4-dihydrocoumarin (DHC) and epoxide (EPO) copolymers (cell-g-P(DHC-alt-EPO)) were prepared in a metal-free DBU/DMSO/CO2 solvent system without adding additional catalyst. Four examples of cell-g-P(DHC-alt-EPO) with tunable thermal and optical properties were synthesized by copolymerization of DHC with styrene oxide (SO), propylene oxide (PO), cyclohexene oxide (CHO) or furfuryl glycidyl ether (FGE) onto cellulose. The nonconjugated cell-g-P(DHC-alt-EPO) showed UV absorption properties with the maximum absorption peak at 282 nm and 295 nm and photoluminescence performance. A clustering-triggered emission mechanism was confirmed and consistent with DFT theoretical calculations. In DMSO solution, the copolymer (DHCSO5) with DP of 11.64 showed ACQ behaviour as the concentration increased. In addition, DHCSO5 had good antioxidant capacity with an instantaneous radical scavenging activity of 2,2-diphenyl-1-picrylhydrazine (DPPH) up to 65 % at a concentration of 40 mg/ ml and increased to 100 % after 30 min. Thus, the multifunctional cell-g-P(DHC-alt-EPO) materials had a variety of potential applications in the fields of fluorescent printing, bio-imaging, UV- shielding and antioxidants.


Assuntos
Dióxido de Carbono , Celulose , Celulose/química , Dióxido de Carbono/química , Dimetil Sulfóxido , Solventes , Polímeros/química , Compostos de Epóxi/química
8.
Ecotoxicol Environ Saf ; 259: 115042, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216866

RESUMO

More and more clinical evidence shows that occupational medicamentose-like dermatitis due to trichloroethylene (OMDT) patients often present immune kidney damage. However, the exact mechanisms of cell-to-cell transmission in TCE-induced immune kidney damage remain poorly understood. The present study aimed to explore the role of high mobility group box-1 (HMGB 1) in glomerular endothelial cell-podocyte transmission. 17 OMDT patients and 34 controls were enrolled in this study. We observed that OMDT patients had renal function injury, endothelial cell activation and podocyte injury, and these indicators were associated with serum HMGB 1. To gain mechanistic insight, a TCE-sensitized BALB/c mouse model was established under the interventions of sirtuin 1 (SIRT 1) activator SRT 1720 (0.1 ml, 5 mg/kg) and receptor for advanced glycation end products (RAGE) inhibitor FPS-ZM 1 (0.1 ml, 1.5 mg/kg). We identified HMGB 1 acetylation and its endothelial cytoplasmic translocation following TCE sensitization, but SRT 1720 abolished the process. RAGE was located on podocytes and co-precipitated with extracellular acetylated HMGB 1, promoting podocyte injury, while SRT 1720 and FPS-ZM 1 both alleviated podocyte injury. The results demonstrate that interventions to upstream and downstream pathways of HMGB 1 may weaken glomerular endothelial cell-podocyte transmission, thereby alleviating TCE-induced immune renal injury.


Assuntos
Nefropatias , Podócitos , Tricloroetileno , Animais , Camundongos , Acetilação , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Rim/metabolismo , Nefropatias/induzido quimicamente , Camundongos Endogâmicos BALB C , Tricloroetileno/toxicidade , Comunicação Celular
9.
Int J Biol Macromol ; 237: 124218, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990419

RESUMO

Herein, a serial of full cellulose and lignosulfonate derivatives (LS), including sodium lignosulfonate (LSS), calcium lignosulfonate (LSC), lignosulfonic acid (LSA), composite films were generated through dissolving cellulose in reversible carbon dioxide (CO2) ionic liquids solvent system (TMG/EG/DMSO/CO2 solvent system), followed by a facile solution-gelation transition and absorption strategy. The findings indicated that LS aggregated and embedded inside the cellulose matrix via H-bond interaction. The cellulose/LS derivatives composite films showed good mechanical properties which the tensile strength reaches the maximum value of 94.7 MPa in MCC3LSS film. While for the MCC1LSS film, the breaking strain increases to 11.6 %. The outstanding UV shielding effect and high transmittance in the visible region of composite films were also achieved and the shielding performance of the whole UV region (200-400 nm) tended to 100 % for MCC5LSS film. In addition, thiol-ene click reaction was selected as model reaction to verify the UV-shielding performance. It was also found that the oxygen and water vapor barrier performances of composite films were evidently associated with the intense H-bond interaction and tortuous path effect. The OP and WVP of MCC5LSS film were 0 and 6 × 10-3 g·µm/m2·day·kPa, respectively. These outstanding properties make them with great potential for packaging field.


Assuntos
Celulose , Líquidos Iônicos , Celulose/química , Dióxido de Carbono , Solventes , Líquidos Iônicos/química
10.
Front Endocrinol (Lausanne) ; 14: 1070264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755918

RESUMO

Background and objective: PCOS is a common metabolic disorder in women of reproductive age, which pathogenesis is very complex. The role of ferroptosis in PCOS is a novel finding, and the mechanistic studies are not clear. Metformin is a commonly used drug of PCOS but few studies on whether metformin can improve the follicle development and ovarian function in PCOS. We aims to use PCOS mouse model to study the effect of metformin on PCOS based on the ovarian function and explored the regulation of metformin in PCOS mice by intervening in ferroptosis pathway. Materials and methods: C57 BL/6J female mice aged 4-5 weeks were purchased and gavaged with letrozole (1 mg/kg/day) combined with high-fat diet for 21days to establish PCOS model, and control group was set up. After modeling, the mice were divided into PCOS model group and metformin treatment group (Met) (n=6).The Met group were gavaged metformin (200 mg/kg/day) for 28 days. The body weight, estrous cycle, glucose tolerance test (OGTT)and insulin resistance test (ITT) were monitored. Then, The mice were euthanized to collect serum and ovaries. Elisa was used to detect changes in related serum hormones (E2, LH, FSH, TP). Ovaries used for molecular biology experiments to detect changes in GPX4, SIRT3, AMPK/p-AMPK, and mTOR/p-mTOR by Western blot and qPCR. Results: Compared with the model group mice, body weight was significantly reduced, and their estrous cycle was restored in Met group. The results of OGTT and ITT showed an improvment of glucose tolerance and insulin resistance. Morphological results showed that after metformin treatment, polycystic lesions in ovaries were reduced, the ovarian function was restored, and the expressions of SIRT3 and GPX4 were elevated. WB results demonstrated that the expressions of p-mTOR and p-AMPK in ovaries were significantly reduced in Model group, but reversed in MET group. Conclusion: Our study confirmed metformin could not only improve body weight and metabolism disorders, but also improve ovarian dysfunction in PCOS mice.In addition, we explored metformin could regulate ferroptosis to improve PCOS via the SIRT3/AMPK/mTOR pathway. Our study complements the mechanisms by which metformin improves PCOS.


Assuntos
Ferroptose , Resistência à Insulina , Metformina , Síndrome do Ovário Policístico , Sirtuína 3 , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal , Serina-Treonina Quinases TOR
11.
J Biol Chem ; 298(12): 102700, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36395883

RESUMO

HSP90 inhibitors can target many oncoproteins simultaneously, but none have made it through clinical trials due to dose-limiting toxicity and induction of heat shock response, leading to clinical resistance. We identified diptoindonesin G (dip G) as an HSP90 modulator that can promote degradation of HSP90 clients by binding to the middle domain of HSP90 (Kd = 0.13 ± 0.02 µM) without inducing heat shock response. This is likely because dip G does not interfere with the HSP90-HSF1 interaction like N-terminal inhibitors, maintaining HSF1 in a transcriptionally silent state. We found that binding of dip G to HSP90 promotes degradation of HSP90 client protein estrogen receptor α (ER), a major oncogenic driver protein in most breast cancers. Mutations in the ER ligand-binding domain (LBD) are an established mechanism of endocrine resistance and decrease the binding affinity of mainstay endocrine therapies targeting ER, reducing their ability to promote ER degradation or transcriptionally silence ER. Because dip G binds to HSP90 and does not bind to the LBD of ER, unlike endocrine therapies, it is insensitive to ER LBD mutations that drive endocrine resistance. Additionally, we determined that dip G promoted degradation of WT and mutant ER with similar efficacy, downregulated ER- and mutant ER-regulated gene expression, and inhibited WT and mutant cell proliferation. Our data suggest that dip G is not only a molecular probe to study HSP90 biology and the HSP90 conformation cycle, but also a new therapeutic avenue for various cancers, particularly endocrine-resistant breast cancer harboring ER LBD mutations.


Assuntos
Antineoplásicos , Benzofuranos , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Mutação , Antineoplásicos/farmacologia , Benzofuranos/farmacologia
12.
Int Immunopharmacol ; 112: 109203, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36058032

RESUMO

Trichloroethylene (TCE) is a volatile chlorinated solvent widely used for cleaning and degreasing industrial metal parts. Due to the widespread use and improper disposal of TCE, exposure to TCE causes a variety of adverse effects on human and animal health. However, the underlying mechanism of the damage remains unclear. The purpose of this study is to investigate the role of Sirtuin-1 (SIRT 1) in TCE-induced immune renal tubular injury. 6-8-week-old female BALB/c mice were used to construct a TCE sensitized mouse model. SIRT 1 activator, SRT 1720 (0.1 ml, 5 mg/kg) and toll like receptor 4 (TLR 4) inhibitor, TAK-242 (0.1 ml, 3 mg/kg) were used for treatment. Results show that SIRT 1 and heat shock protein 70 (HSP 70) levels are significantly down-regulated in renal tubules, serum and urine HSP 70 levels are significantly increased, and inflammatory cytokines levels are significantly increased in renal tubules in TCE-sensitized positive mice. After SRT 1720 treatment, intracellular HSP 70 level is significantly increased and extracellular HSP 70 level is decreased, and inflammatory cytokines levels get alleviated. In addition, HSP 70 and Toll-like Receptor 4 (TLR 4) proteins exist an interaction that can be significantly attenuated by SIRT 1. Subsequently, inflammation of the renal tubules mediated by SIRT 1 downregulation is attenuated after TAK-242 treatment. In conclusion, SIRT 1 alleviates renal tubular epithelial cells immune injury by inhibiting the release of HSP 70 and thereby weakening interaction with HSP 70 and TLR 4.


Assuntos
Túbulos Renais , Tricloroetileno , Animais , Feminino , Camundongos , Citocinas , Proteínas de Choque Térmico HSP70/genética , Camundongos Endogâmicos BALB C , Sirtuína 1/genética , Solventes/toxicidade , Receptor 4 Toll-Like/genética , Tricloroetileno/toxicidade , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia
13.
Toxicol Ind Health ; 38(5): 287-298, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35466825

RESUMO

The mechanism of kidney injury in occupational medicamentosa-like dermatitis due to trichloroethylene exposure is not well understood. This study aimed to investigate the role of endothelin-1 (ET-1)/vascular endothelial-derived growth factor-A (VEGF-A) in trichloroethylene (TCE)-induced renal injury. Forty BALB/c female mice were used in this study to build the TCE-sensitization mouse model. Transmission electron microscopic observation, histological examination, periodic acid-Schiff staining, serum urea nitrogen, creatinine, and urinary total protein levels were used to reflect renal injury. Glypican1, syndecan1, ET-1 and VEGF-A protein levels were measured by western blot. Serum ET-1 level was also measured. Tumor necrosis factor alpha (TNF-α) and vascular cell adhesion molecule-1 (VCAM-1) were detected by immunohistochemistry. The results showed that TCE-sensitized mouse kidneys were damaged and accompanied by increased serum ET-1. After treatment with CGS 35066, the inhibitor of endothelin converting enzyme-1 (ECE-1), kidney ET-1, TNF-α and VCAM-1 levels decreased, and renal function improved in TCE+CGS 35066-sensitized positive mice. In addition, kidney VEGF-A, glomerular endothelial cell glypican1 and syndecan1 levels increased, and endothelial cell damage was alleviated after treatment with CGS 35066. The results suggest that inhibiting ECE-1 could alleviate glomerular endothelial cell injury by inhibiting ET-1 expression, thus promoting endothelial cell repair by upregulating VEGF-A.


Assuntos
Tricloroetileno , Animais , Endotelina-1/metabolismo , Feminino , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Tricloroetileno/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Bioengineered ; 12(2): 9723-9738, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592882

RESUMO

Sepsis, resulting from infections, is a systemic inflammatory response syndrome with a high fatality rate. The present study revolves around probing into the function and molecular mechanism of long non-coding RNA OIP5 antisense RNA 1 (lncRNA OIP5-AS1) in modulating acute lung injury (ALI) mediated by sepsis. Here, a sepsis model was constructed using cecal ligation and puncture (CLP) surgery in vivo. The alveolar macrophage cell line NR8383 and the alveolar type II cell line RLE-6TN were dealt with lipopolysaccharide (LPS) for in-vitro experiments. We discovered that OIP5-AS1 and Sirtuin1 (SIRT1) were markedly down-regulated in sepsis models elicited by CLP or LPS, while miR-128-3p experienced a dramatic up-regulation. OIP5-AS1 overexpression attenuated NR8383 and RLE-6TN cell apoptosis triggered by LPS and suppressed the expressions of nuclear factor kappa B (NF-κB), inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in NR8383 and RLE-6TN cells, whereas miR-128-3p overexpression resulted in the opposite phenomenon. Moreover, OIP5-AS1 overexpression relieved lung edema, lung epithelial cell apoptosis, infiltration of myeloperoxidase (MPO)-labeled polymorphonuclear neutrophils (PMN), inflammatory responses triggered by CLP in vivo. Mechanistically, miR-128-3p, which targeted SIRT1, was hobbled by OIP5-AS1. All in all, OIP5-AS1 overexpression enhanced sepsis-induced ALI by modulating the miR-128-3p/SIRT1 pathway, which helps create new insights into sepsis treatment.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Sepse/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Sepse/induzido quimicamente
15.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875586

RESUMO

Coordinated beating is crucial for the function of multiple cilia. However, the molecular mechanism is poorly understood. Here, we characterize a conserved ciliary protein CYB5D1 with a heme-binding domain and a cordon-bleu ubiquitin-like domain. Mutation or knockdown of Cyb5d1 in zebrafish impaired coordinated ciliary beating in the otic vesicle and olfactory epithelium. Similarly, the two flagella of an insertional mutant of the CYB5D1 ortholog in Chlamydomonas (Crcyb5d1) showed an uncoordinated pattern due to a defect in the cis-flagellum. Biochemical analyses revealed that CrCYB5D1 is a radial spoke stalk protein that binds heme only under oxidizing conditions. Lack of CrCYB5D1 resulted in a reductive shift in flagellar redox state and slowing down of the phototactic response. Treatment of Crcyb5d1 with oxidants restored coordinated flagellar beating. Taken together, these data suggest that CrCYB5D1 may integrate environmental and intraciliary signals and regulate the redox state of cilia, which is crucial for the coordinated beating of multiple cilia.


Assuntos
Cílios/metabolismo , Cílios/fisiologia , Citocromos b5/metabolismo , Animais , Axonema/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas/fisiologia , Citocromos b5/fisiologia , Dineínas/metabolismo , Flagelos/metabolismo , Flagelos/fisiologia , Proteínas Ligantes de Grupo Heme/metabolismo , Proteínas Ligantes de Grupo Heme/fisiologia , Microtúbulos/metabolismo , Mutação , Peixe-Zebra/metabolismo
16.
Ecotoxicol Environ Saf ; 208: 111439, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039874

RESUMO

Trichloroethylene (TCE) induced occupational medicamentosa-like dermatitis (OMLDT) in patients is accompanied, typically, by renal damage. But the role of C5b-9 and IL-1ß in TCE-sensitized mouse renal tubular damage is unclear. This study aimed to investigate whether TCE-sensitized mouse renal tubular epithelial cell damage was induced by NLRP3 inflammasome and whether NLRP3 inflammasome was activated by sublytic C5b-9. In total, 52 specific pathogen-free BALB/c female mice, 6- to 8-week-old, were used for establishing the TCE-sensitized mouse model. Renal tubular epithelial cells were isolated and used for determining the sublytic level of C5b-9. Kidney histological examination, serum neutrophil gelatinase associated lipocalin (NGAL) level were used for kidney damage evaluation. Renal protein levels of C5b-9, NLRP3, ASC, Caspase-1, IL-1ß, and IL-18 were measured. The renal lesions, serum NGAL level, renal NLRP3, ASC, Caspase-1 and IL-1ß protein levels all increased significantly in TCE sensitized positive group. However, pretreatment with recombinant protein sCD59-Cys inhibited the expression of C5b-9, NLRP3 inflammasome, IL-1ß, IL-18, and attenuated renal tubular epithelial cell damage. The sublytic C5b-9 activated NLRP3 inflammasome and aggravated renal tubular epithelial cell damage. Pretreatment with recombinant protein sCD59-Cys blocked the expression of the NLRP3 inflammasome by inhibiting the expression of C5b-9, and alleviating renal tubular epithelial cell damage.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Solventes/toxicidade , Tricloroetileno/toxicidade , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Rim/metabolismo , Nefropatias/metabolismo , Lipocalina-2 , Camundongos , Camundongos Endogâmicos BALB C
17.
Int Immunopharmacol ; 88: 106897, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32822909

RESUMO

Trichloroethylene (TCE) induced TCE hypersensitivity syndrome which makes immune injuries in multi-system. The multiple organ damage included skin, liver, kidney and so on. The main manifestations of liver injuries were apoptosis and edema of hepatocytes. In our previous research, we found the activation of Kupffer cells (KCs) which increased IL-6 can aggravate liver cell apoptosis in TCE sensitized mice. However, the mechanism of IL-6 in liver damages induced by TCE was not clear. This study explored the function of IL-6/STAT3 signal pathway on the TCE induced apoptosis of liver cell. We established a TCE sensitized BALB/c mouse model with a KCs inhibitor GdCl3, we found that the expressions of ALT and AST in TCE sensitization positive mice were higher than other mice, and the expressions of apoptosis-related proteins were up-regulated in TCE sensitization positive mice, GdCl3 could alleviate this process. Meanwhile, GdCl3 could significantly decrease the expressions of IL-6/STAT3 proteins. All in all, the activation of KCs can increase the expression of IL-6, IL-6R and phosphorylate STAT3, induces hepatocyte apoptosis, and participates in immunity damage of liver which induced by TCE.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Hepatócitos/imunologia , Interleucina-6/imunologia , Células de Kupffer/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos BALB C , Receptores de Interleucina-6/imunologia , Tricloroetileno
18.
PLoS Genet ; 16(3): e1008655, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32196499

RESUMO

E2f5 is a member of the E2f family of transcription factors that play essential roles during many cellular processes. E2f5 was initially characterized as a transcriptional repressor in cell proliferation studies through its interaction with the Retinoblastoma (Rb) protein for inhibition of target gene transcription. However, the precise roles of E2f5 during embryonic and post-embryonic development remain incompletely investigated. Here, we report that zebrafish E2f5 plays critical roles during spermatogenesis and multiciliated cell (MCC) differentiation. Zebrafish e2f5 mutants develop exclusively as infertile males. In the mutants, spermatogenesis is arrested at the zygotene stage due to homologous recombination (HR) defects, which finally leads to germ cell apoptosis. Inhibition of cell apoptosis in e2f5;tp53 double mutants rescued ovarian development, although oocytes generated from the double mutants were still abnormal, characterized by aberrant distribution of nucleoli. Using transcriptome analysis, we identified dmc1, which encodes an essential meiotic recombination protein, as the major target gene of E2f5 during spermatogenesis. E2f5 can bind to the promoter of dmc1 to promote HR, and overexpression of dmc1 significantly increased the fertilization rate of e2f5 mutant males. Besides gametogenesis defects, e2f5 mutants failed to develop MCCs in the nose and pronephric ducts during early embryonic stages, but these cells recovered later due to redundancy with E2f4. Moreover, we demonstrate that ion transporting principal cells in the pronephric ducts, which remain intercalated with the MCCs, do not contain motile cilia in wild-type embryos, while they generate single motile cilia in the absence of E2f5 activity. In line with this, we further show that E2f5 activates the Notch pathway gene jagged2b (jag2b) to inhibit the acquisition of MCC fate as well as motile cilia differentiation by the neighboring principal cells. Taken together, our data suggest that E2f5 can function as a versatile transcriptional activator and identify novel roles of the protein in spermatogenesis as well as MCC differentiation during zebrafish development.


Assuntos
Fator de Transcrição E2F5/metabolismo , Espermatogênese/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Cílios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F5/genética , Masculino , Receptores Notch/metabolismo , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
19.
Polymers (Basel) ; 12(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164360

RESUMO

Soybean oil is beneficial to improve the compatibility between polylactide (PLA) and succinylated lignin (SAL), which leads to the preparation of a host of biobased composites containing PLA, SAL, and epoxidized soybean oil (ESO). The introduction of SAL and ESO enables the relatively homogeneous morphology and slightly better miscibility obtained from triply PLA/SAL/ESO composites after dynamic vulcanization compared with unmodified PLA. The rigidity of the composites is found to decline gradually due to the addition of flexible molecular chains. According to the reaction between SAL and ESO, the Tg of PLA/SAL/ESO composites is susceptible to the movement of flexible molecular chains. The rheological behaviors of PLA/SAL/ESO under different conditions, i.e., temperature and frequency, exhibit a competition between viscidity and elasticity. The thermal stability of the composites displays a slight decrease due to the degradation of SAL and then the deterioration of ESO. The elongation at break and notched impact strength of the composites with augmentation of ESO increase by 12% and 0.5 kJ/m2, respectively. The triply biobased PLA/SAL/ESO composite is thus deemed as a bio-renewable and environmentally friendly product that may find vast applications.

20.
J Med Chem ; 62(15): 7042-7057, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31271281

RESUMO

Histone deacetylase 6 (HDAC6) primarily catalyzes the removal of acetyl group from the side chain of acetylated lysine residues in cytoplasmic proteins such as α-tubulin and HSP90. HDAC6 is involved in multiple disease-relevant pathways. Based on the proteolysis targeting chimera strategy, we previously developed the first HDAC6 degrader by tethering a pan-HDAC inhibitor with cereblon (CRBN) E3 ubiquitin ligase ligand. We herein report our new generation of multifunctional HDAC6 degraders by tethering selective HDAC6 inhibitor Nexturastat A with CRBN ligand that can synergize with HDAC6 degradation for the antiproliferation of multiple myeloma (MM). This new class of degraders exhibited improved potency and selectivity for the degradation of HDAC6. After the optimization of the linker length and linking positions, we discovered potent HDAC6 degraders with nanomolar DC50 and promising antiproliferation activity in multiple myeloma (MM) cells.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos/métodos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Mieloma Múltiplo/enzimologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Células HeLa , Células Hep G2 , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Células MCF-7 , Mieloma Múltiplo/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA