Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Translat ; 45: 226-235, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38596341

RESUMO

Objectives: To investigate the potential role of Ribosomal protein L35 (RPL35) in regulating chondrocyte catabolic metabolism and to examine whether osteoarthritis (OA) progression can be delayed by overexpressing RPL35 in a mouse compression loading model. Methods: RNA sequencing analysis was performed on chondrocytes treated with or without 20 % elongation strain loading for 24 h. Experimental OA in mice was induced by destabilization of the medial meniscus and compression loading. Mice were randomly assigned to a sham group, an intra-articular adenovirus-mediated overexpression of the negative group, and an intra-articular adenovirus-mediated overexpression of the RPL35 operated group. The Osteoarthritis Research Society International score was used to evaluate cartilage degeneration. Immunostaining and western blot analyses were conducted to detect relative protein levels. Primary mouse chondrocytes were treated with 20 % elongation strain loading for 24 h to investigate the role of RPL35 in modulating chondrocyte catabolic metabolism and regulating cellular senescence in chondrocytes. Results: The protein expression of RPL35 in mouse chondrocytes was significantly reduced when excessive mechanical loading was applied, while elevated protein levels of RPL35 protected articular chondrocytes from degeneration. In addition, the RPL35 knockdown alone induced chondrocyte senescence, decreased the expression of anabolic markers, and increased the expression of catabolic markers in vitro in part through the hedgehog (Hh) pathway. Conclusions: These findings demonstrated a functional pathway important for OA development and identified intra-articular injection of RPL35 as a potential therapy for OA prevention and treatment. The translational potential of this article: It is necessary to develop new targeted drugs for OA due to the limitations of conventional pharmacotherapy. Our study explores and demonstrates the protective effect of RPL35 against excessive mechanical stress in OA models in vivo and in vitro in animals. These findings might provide novel insights into OA pathogenesis and show its translational potential for OA therapy.

2.
J Transl Med ; 21(1): 339, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217897

RESUMO

BACKGROUND: Disruption of N6 methyl adenosine (m6A) modulation hampers gene expression and cellular functions, leading to various illnesses. However, the role of m6A modification in osteoarthritis (OA) synovitis remains unclear. This study aimed to explore the expression patterns of m6A regulators in OA synovial cell clusters and identify key m6A regulators that mediate synovial macrophage phenotypes. METHODS: The expression patterns of m6A regulators in the OA synovium were illustrated by analyzing bulk RNA-seq data. Next, we built an OA LASSO-Cox regression prediction model to identify the core m6A regulators. Potential target genes of these m6A regulators were identified by analyzing data from the RM2target database. A molecular functional network based on core m6A regulators and their target genes was constructed using the STRING database. Single-cell RNA-seq data were collected to verify the effects of m6A regulators on synovial cell clusters. Conjoint analyses of bulk and single-cell RNA-seq data were performed to validate the correlation between m6A regulators, synovial clusters, and disease conditions. After IGF2BP3 was screened as a potential modulator in OA macrophages, the IGF2BP3 expression level was tested in OA synovium and macrophages, and its functions were further tested by overexpression and knockdown in vitro. RESULTS: OA synovium showed aberrant expression patterns of m6A regulators. Based on these regulators, we constructed a well-fitting OA prediction model comprising six factors (FTO, YTHDC1, METTL5, IGF2BP3, ZC3H13, and HNRNPC). The functional network indicated that these factors were closely associated with OA synovial phenotypic alterations. Among these regulators, the m6A reader IGF2BP3 was identified as a potential macrophage mediator. Finally, IGF2BP3 upregulation was verified in the OA synovium, which promoted macrophage M1 polarization and inflammation. CONCLUSIONS: Our findings revealed the functions of m6A regulators in OA synovium and highlighted the association between IGF2BP3 and enhanced M1 polarization and inflammation in OA macrophages, providing novel molecular targets for OA diagnosis and treatment.


Assuntos
Osteoartrite , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Inflamação/metabolismo , Macrófagos/metabolismo , Osteoartrite/genética , Fenótipo , Membrana Sinovial/metabolismo
3.
Cell Death Dis ; 13(6): 567, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739102

RESUMO

Emerging evidence has shown an imbalance in M1/M2 macrophage polarization to play an essential role in osteoarthritis (OA) progression. However, the underlying mechanistic basis for this polarization is unknown. RNA sequencing of OA M1-polarized macrophages found highly expressed levels of pentraxin 3 (PTX3), suggesting a role for PTX3 in OA occurrence and development. Herein, PTX3 was found to be increased in the synovium and articular cartilage of OA patients and OA mice. Intra-articular injection of PTX3 aggravated, while PTX3 neutralization reversed synovitis and cartilage degeneration. No metabolic disorder or proteoglycan loss were observed in cartilage explants when treated with PTX3 alone. However, cartilage explants exhibited an OA phenotype when treated with culture supernatants of macrophages stimulated with PTX3, suggesting that PTX3 did not have a direct effect on chondrocytes. Therefore, the OA anti-chondrogenic effects of PTX3 are primarily mediated through macrophages. Mechanistically, PTX3 was upregulated by miR-224-5p deficiency, which activated the p65/NF-κB pathway to promote M1 macrophage polarization by targeting CD32. CD32 was expressed by macrophages, that when stimulated with PTX3, secreted abundant pro-inflammation cytokines that induced severe articular cartilage damage. The paracrine interaction between macrophages and chondrocytes produced a feedback loop that enhanced synovitis and cartilage damage. The findings of this study identified a functional pathway important to OA development. Blockade of this pathway and PTX3 may prevent and treat OA.


Assuntos
Proteína C-Reativa , MicroRNAs , Osteoartrite , Componente Amiloide P Sérico , Sinovite , Animais , Condrócitos/metabolismo , Humanos , Macrófagos , Camundongos , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Sinovite/genética , Sinovite/metabolismo
4.
Ann Rheum Dis ; 81(5): 676-686, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058228

RESUMO

OBJECTIVES: To investigate the role of mechanical stress in cartilage ageing and identify the mechanistic association during osteoarthritis (OA) progression. METHODS: F-box and WD repeat domain containing 7 (FBXW7) ubiquitin ligase expression and chondrocyte senescence were examined in vitro, in experimental OA mice and in human OA cartilage. Mice with Fbxw7 knockout in chondrocytes were generated and adenovirus-expressing Fbxw7 (AAV-Fbxw7) was injected intra-articularly in mice. Destabilised medial meniscus surgery was performed to induce OA. Cartilage damage was measured using the Osteoarthritis Research Society International score and the changes in chondrocyte senescence were determined. mRNA sequencing was performed in articular cartilage from Fbxw7 knockout and control mice. RESULTS: Mechanical overloading accelerated senescence in cultured chondrocytes and in mice articular cartilage. FBXW7 was downregulated by mechanical overloading in primary chondrocytes and mice cartilage, and decreased in the cartilage of patients with OA, aged mice and OA mice. FBXW7 deletion in chondrocytes induced chondrocyte senescence and accelerated cartilage catabolism in mice, as manifested by an upregulation of p16INK4A, p21 and Colx and downregulation of Col2a1 and ACAN, which resulted in the exacerbation of OA. By contrast, intra-articular injection of adenovirus expressing Fbxw7 alleviated OA in mice. Mechanistically, mechanical overloading decreased Fbxw7 mRNA transcription and FBXW7-mediated MKK7 degradation, which consequently stimulated JNK signalling. In particular, inhibition of JNK activity by DTP3, a MKK7 inhibitor, ameliorated chondrocyte senescence and cartilage degeneration CONCLUSIONS: FBXW7 is a key factor in the association between mechanical overloading and chondrocyte senescence and cartilage ageing in the pathology of OA.


Assuntos
Cartilagem Articular , Proteína 7 com Repetições F-Box-WD/metabolismo , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Humanos , Camundongos , Osteoartrite/patologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA