Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Integr Cancer Ther ; 23: 15347354241236205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462929

RESUMO

BACKGROUND: Siwu Decoction (SWD) is a well-known classical TCM formula that has been shown to be effective as a basis for preventing and reducing liver metastases (LM). However, the active ingredients and potential molecular mechanisms remain unclear. OBJECTIVE: This study aimed to systematically analyze the active ingredients and potential molecular mechanisms of SWD on LM and validate mechanisms involved. MATERIALS AND METHODS: The active ingredients in SWD were extracted by UHPLC-MS/MS in a latest study. Protox II was retrieved to obtain toxicological parameters to detect safety. Swiss Target Prediction database was exploited to harvest SWD targets. Five databases, Gene Cards, DisGeNET, Drugbank, OMIM, and TTD, were employed to filter pathogenic targets of LM. STRING database was utilized to construct the protein-protein interaction network for therapeutic targets, followed by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. GEPIA database and the Human Protein Atlas were taken to observe the expression of core genes and proteins. ImmuCellAI algorithm was applied to analyze the immune microenvironment and survival relevant to core genes. Molecular docking was performed to verify the affinity of SWD effective ingredients to core targets. In vivo experiments were carried out to validate the anti-LM efficacy of SWD and verify the pivotal mechanisms of action. RESULTS: Eighteen main bioactive phytochemicals identified were all non-hepatotoxic. PPI network acquired 118 therapeutic targets, of which VEGFA, CASP3, STAT3, etc. were identified as core targets. KEGG analysis revealed that HIF-1 pathway and others were critical. After tandem targets and pathways, HIF-1/VEGF was regarded as the greatest potential pathway. VEGFA and HIF-1 were expressed differently in various stages of cancer and normal tissues. There was a negative regulation of immunoreactive cells by VEGFA, which was influential for prognosis. Molecular docking confirmed the tight binding to VEGFA. This study revealed the exact effect of SWD against LM, and identified significant inhibition the expression of HIF-1α, VEGF, and CD31 in the liver microenvironment. CONCLUSION: This study clarified the active ingredients of SWD, the therapeutic targets of LM and potential molecular mechanisms. SWD may protect against LM through suppressing HIF-1/VEGF pathway.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Espectrometria de Massas em Tandem , Fator A de Crescimento do Endotélio Vascular , Neoplasias Hepáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Microambiente Tumoral
2.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189081, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280471

RESUMO

Distant metastasis is responsible for high mortality in most cancer cases and the lung is one of the most common target organs, severely affecting the quality of daily life and overall survival of cancer patients. With relevant research breakthroughs accumulating, scientists have developed a deeper understanding of lung metastasis (LM) from the rudimentary "seed and soil" theory to a more vivid concept of the pre-metastatic niche (PMN). Thus, the mechanisms of PMN formation become considerably complicated, involving various types of cells, chemokines, cytokines, and proteins, providing potential biomarkers for improved LM diagnosis and treatment techniques. Here we summarized the latest findings (in 3 years) of lung PMN and systematically collated it from basic research to clinical application, which clearly exhibited the influences of the primary tumor, stromal, and bone marrow-derived cells (BMDCs) and associated molecules in the formation of lung PMN.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Pulmão/patologia , Citocinas , Biomarcadores
3.
Cancer Med ; 12(10): 11211-11233, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37161541

RESUMO

OBJECTIVE: The aim of this meta-analysis was to summarize the available results of immunotherapy predictors for small cell lung cancer (SCLC) and to provide evidence-based information for their potential predictive value of efficacy. METHODS: We searched PubMed, EMBASE, Web of Science, The Cochrane Library, and ClinicalTrials (from January 1, 1975 to November 1, 2021). The hazard ratios (HR) and its 95% confidence intervals (CIs) and tumor response rate of the included studies were extracted. RESULTS: Eleven studies were eventually included and the pooled results showed that programmed cell death ligand 1 (PD-L1) positive: objective response rate (ORR) (relative risk [RR] = 1.39, 95% CI [0.48, 4.03], p = 0.54), with high heterogeneity (p = 0.05, I2  = 56%); disease control rate [DCR] (RR = 1.31, 95% CI [0.04, 38.57], p = 0.88), with high heterogeneity (p = 0.04, I2  = 75%); overall survival (OS) (HR = 0.89, 95% CI [0.74, 1.07], p = 0.22); and progression-free survival (PFS) (HR = 0.83, 95% CI [0.59, 1.16], p = 0.27), with high heterogeneity (p = 0.005, I2  = 73.1%). TMB-High (TMB-H): OS (HR = 0.86, 95% CI [0.74, 1.00], p = 0.05); PFS (HR = 0.71, 95% CI [0.6, 0.85], p < 0.001). Lactate dehydrogenase (LDH) >upper limit of normal (ULN): OS (HR = 0.95, 95% CI [0.81, 1.11], p = 0.511). Asian patients: OS (HR = 0.87, 95% CI [0.72, 1.04], p = 0.135); White/Non-Asian patients: OS (HR = 0.83, 95% CI [0.76, 0.90], p < 0.001). Liver metastasis patients: OS (HR = 0.93, 95% CI [0.83, 1.05], p = 0.229); PFS (HR = 0.84, 95% CI [0.67, 1.06], p = 0.141). Central nervous system (CNS) metastasis patients: OS (HR = 0.91, 95% CI [0.71, 1.17], p = 0.474); PFS (HR = 1.03, 95% CI [0.66, 1.60], p = 0.903). CONCLUSION: The available research results do not support the recommendation of PD-L1 positive and TMB-H as predictors for the application of immune checkpoint inhibitors (ICIs) in SCLC patients. LDH, baseline liver metastasis and CNS metastasis may be used as markers/influencing factors for predicting the efficacy of ICIs in SCLC patients. Non-Asian SCLC patients had better efficacy with ICIs in our results.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Segunda Neoplasia Primária , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Biomarcadores , L-Lactato Desidrogenase , Neoplasias Pulmonares/tratamento farmacológico
4.
Aging (Albany NY) ; 15(10): 4391-4410, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37219449

RESUMO

B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.


Assuntos
Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patologia , Camundongos Nus , Linhagem Celular Tumoral , Nasofaringe/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
5.
Front Nutr ; 9: 985991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091226

RESUMO

Purpose: Shiliao Decoction (SLD) was developed for treatment and prevention of cancer-associated malnutrition (CAM) in China. In this study, we aim to discover SLD's active compounds and demonstrate the mechanisms of SLD that combat CAM through network pharmacology and molecular docking techniques. Methods: All components of SLD were retrieved from the pharmacology database of Traditional Chinese Medicine Systems Pharmacology (TCMSP). The GeneCards database and the Online Mendelian Inheritance in Man database (OMIM) were used to identify gene encoding target compounds, and Cytoscape was used to construct the drug compound-target network. The network of target protein-protein interactions (PPI) was constructed using the STRING database, while gene ontology (GO) functional terms and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways associated with potential targets were analyzed using a program in R language (version 4.2.0). Core genes linked with survival and the tumor microenvironment were analyzed using the Kaplan-Meier plotter and TIMER 2.0 databases, respectively. Protein expression and transcriptome expression levels of core gene were viewed using the Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA). A component-target-pathway (C-T-P) network was created using Cytoscape, and Autodock Vina software was used to verify the molecular docking of SLD components and key targets. Results: The assembled compound-target network primarily contained 134 compounds and 147 targets of the SLD associated with JUN, TP53, MAPK3, MAPK1, MAPK14, STAT3, AKT1, HSP90AA1, FOS, and MYC, which were identified as core targets by the PPI network. KEGG pathway analysis revealed pathways involved in lipid and atherosclerosis, the PI3K/Akt signaling pathway, and immune-related pathways among others. JUN is expressed at different levels in normal and cancerous tissues, it is closely associated with the recruitment of different immune cells and has been shown to have a significant impact on prognosis. The C-T-P network suggests that the active component of SLD is capable of regulating target genes affecting these related pathways. Finally, the reliability of the core targets was evaluated using molecular docking technology. Conclusion: This study revealed insights into SLD's active components, potential targets, and possible molecular mechanisms, thereby demonstrating a potential method for examining the scientific basis and therapeutic mechanisms of TCM formulae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA