Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748243

RESUMO

OBJECTIVE: To comprehensively assess the impact of aging, cigarette smoking, and chronic obstructive pulmonary disease (COPD) on pulmonary physiology using 129Xe MR. METHODS: A total of 90 subjects were categorized into four groups, including healthy young (HY, n = 20), age-matched control (AMC, n = 20), asymptomatic smokers (AS, n = 28), and COPD patients (n = 22). 129Xe MR was utilized to obtain pulmonary physiological parameters, including ventilation defect percent (VDP), alveolar sleeve depth (h), apparent diffusion coefficient (ADC), total septal wall thickness (d), and ratio of xenon signal from red blood cells and interstitial tissue/plasma (RBC/TP). RESULTS: Significant differences were found in the measured VDP (p = 0.035), h (p = 0.003), and RBC/TP (p = 0.003) between the HY and AMC groups. Compared with the AMC group, higher VDP (p = 0.020) and d (p = 0.048) were found in the AS group; higher VDP (p < 0.001), d (p < 0.001) and ADC (p < 0.001), and lower h (p < 0.001) and RBC/TP (p < 0.001) were found in the COPD group. Moreover, significant differences were also found in the measured VDP (p < 0.001), h (p < 0.001), ADC (p < 0.001), d (p = 0.008), and RBC/TP (p = 0.032) between the AS and COPD groups. CONCLUSION: Our findings indicate that pulmonary structure and functional changes caused by aging, cigarette smoking, and COPD are various, and show a progressive deterioration with the accumulation of these risk factors, including cigarette smoking and COPD. CLINICAL RELEVANCE STATEMENT: Pathophysiological changes can be difficult to comprehensively understand due to limitations in common techniques and multifactorial etiologies. 129Xe MRI can demonstrate structural and functional changes caused by several common factors and can be used to better understand patients' underlying pathology. KEY POINTS: Standard techniques for assessing pathophysiological lung function changes, spirometry, and chest CT come with limitations. 129Xe MR demonstrated progressive deterioration with accumulation of the investigated risk factors, without these limitations. 129Xe MR can assess lung changes related to these risk factors to stage and evaluate the etiology of the disease.

2.
Med Phys ; 51(1): 378-393, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37401205

RESUMO

BACKGROUND: Hyperpolarized (HP) gas MRI enables the clear visualization of lung structure and function. Clinically relevant biomarkers, such as ventilated defect percentage (VDP) derived from this modality can quantify lung ventilation function. However, long imaging time leads to image quality degradation and causes discomfort to the patients. Although accelerating MRI by undersampling k-space data is available, accurate reconstruction and segmentation of lung images are quite challenging at high acceleration factors. PURPOSE: To simultaneously improve the performance of reconstruction and segmentation of pulmonary gas MRI at high acceleration factors by effectively utilizing the complementary information in different tasks. METHODS: A complementation-reinforced network is proposed, which takes the undersampled images as input and outputs both the reconstructed images and the segmentation results of lung ventilation defects. The proposed network comprises a reconstruction branch and a segmentation branch. To effectively exploit the complementary information, several strategies are designed in the proposed network. Firstly, both branches adopt the encoder-decoder architecture, and their encoders are designed to share convolutional weights for facilitating knowledge transfer. Secondly, a designed feature-selecting block discriminately feeds shared features into decoders of both branches, which can adaptively pick suitable features for each task. Thirdly, the segmentation branch incorporates the lung mask obtained from the reconstructed images to enhance the accuracy of the segmentation results. Lastly, the proposed network is optimized by a tailored loss function that efficiently combines and balances these two tasks, in order to achieve mutual benefits. RESULTS: Experimental results on the pulmonary HP 129 Xe MRI dataset (including 43 healthy subjects and 42 patients) show that the proposed network outperforms state-of-the-art methods at high acceleration factors (4, 5, and 6). The peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and Dice score of the proposed network are enhanced to 30.89, 0.875, and 0.892, respectively. Additionally, the VDP obtained from the proposed network has good correlations with that obtained from fully sampled images (r = 0.984). At the highest acceleration factor of 6, the proposed network promotes PSNR, SSIM, and Dice score by 7.79%, 5.39%, and 9.52%, respectively, in comparison to the single-task models. CONCLUSION: The proposed method effectively enhances the reconstruction and segmentation performance at high acceleration factors up to 6. It facilitates fast and high-quality lung imaging and segmentation, and provides valuable support in the clinical diagnosis of lung diseases.


Assuntos
Processamento de Imagem Assistida por Computador , Pulmão , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Respiração , Razão Sinal-Ruído
3.
Eur Radiol ; 32(1): 702-713, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34255160

RESUMO

OBJECTIVES: Multiple b-value gas diffusion-weighted MRI (DW-MRI) enables non-invasive and quantitative assessment of lung morphometry, but its long acquisition time is not well-tolerated by patients. We aimed to accelerate multiple b-value gas DW-MRI for lung morphometry using deep learning. METHODS: A deep cascade of residual dense network (DC-RDN) was developed to reconstruct high-quality DW images from highly undersampled k-space data. Hyperpolarized 129Xe lung ventilation images were acquired from 101 participants and were retrospectively collected to generate synthetic DW-MRI data to train the DC-RDN. Afterwards, the performance of the DC-RDN was evaluated on retrospectively and prospectively undersampled multiple b-value 129Xe MRI datasets. RESULTS: Each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms. For the retrospective test data, the DC-RDN showed significant improvement on all quantitative metrics compared with the conventional reconstruction methods (p < 0.05). The apparent diffusion coefficient (ADC) and morphometry parameters were not significantly different between the fully sampled and DC-RDN reconstructed images (p > 0.05). For the prospectively accelerated acquisition, the required breath-holding time was reduced from 17.8 to 4.7 s with an acceleration factor of 4. Meanwhile, the prospectively reconstructed results showed good agreement with the fully sampled images, with a mean difference of -0.72% and -0.74% regarding global mean ADC and mean linear intercept (Lm) values. CONCLUSIONS: DC-RDN is effective in accelerating multiple b-value gas DW-MRI while maintaining accurate estimation of lung microstructural morphometry, facilitating the clinical potential of studying lung diseases with hyperpolarized DW-MRI. KEY POINTS: • The deep cascade of residual dense network allowed fast and high-quality reconstruction of multiple b-value gas diffusion-weighted MRI at an acceleration factor of 4. • The apparent diffusion coefficient and morphometry parameters were not significantly different between the fully sampled images and the reconstructed results (p > 0.05). • The required breath-holding time was reduced from 17.8 to 4.7 s and each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms.


Assuntos
Aprendizado Profundo , Doença Pulmonar Obstrutiva Crônica , Imagem de Difusão por Ressonância Magnética , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Isótopos de Xenônio
4.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219111

RESUMO

The recovery process of COVID-19 patients is unclear. Some recovered patients complain of continued shortness of breath. Vasculopathy has been reported in COVID-19, stressing the importance of probing pulmonary microstructure and function at the alveolar-capillary interface. While computed tomography (CT) detects structural abnormalities, little is known about the impact of disease on lung function. 129Xe magnetic resonance imaging (MRI) is a technique uniquely capable of assessing ventilation, microstructure, and gas exchange. Using 129Xe MRI, we found that COVID-19 patients show a higher rate of ventilation defects (5.9% versus 3.7%), unchanged microstructure, and longer gas-blood exchange time (43.5 ms versus 32.5 ms) compared with healthy individuals. These findings suggest that regional ventilation and alveolar airspace dimensions are relatively normal around the time of discharge, while gas-blood exchange function is diminished. This study establishes the feasibility of localized lung function measurements in COVID-19 patients and their potential usefulness as a supplement to structural imaging.


Assuntos
COVID-19/diagnóstico por imagem , COVID-19/fisiopatologia , Pulmão/fisiopatologia , Troca Gasosa Pulmonar , Adulto , Feminino , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Alta do Paciente , Testes de Função Respiratória , Tomografia Computadorizada por Raios X , Isótopos de Xenônio
5.
Magn Reson Med ; 82(6): 2273-2285, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31322298

RESUMO

PURPOSE: To fast and accurately reconstruct human lung gas MRI from highly undersampled k-space using deep learning. METHODS: The scheme was comprised of coarse-to-fine nets (C-net and F-net). Zero-filling images from retrospectively undersampled k-space at an acceleration factor of 4 were used as input for C-net, and then output intermediate results which were fed into F-net. During training, a L2 loss function was adopted in C-net, while a function that united L2 loss with proton prior knowledge was used in F-net. The 871 hyperpolarized 129 Xe pulmonary ventilation images from 72 volunteers were randomly arranged as training (90%) and testing (10%) data. Ventilation defect percentage comparisons were implemented using a paired 2-tailed Student's t-test and correlation analysis. Furthermore, prospective acquisitions were demonstrated in 5 healthy subjects and 5 asymptomatic smokers. RESULTS: Each image with size of 96 × 84 could be reconstructed within 31 ms (mean absolute error was 4.35% and structural similarity was 0.7558). Compared with conventional compressed sensing MRI, the mean absolute error decreased by 17.92%, but the structural similarity increased by 6.33%. For ventilation defect percentage, there were no significant differences between the fully sampled and reconstructed images through the proposed algorithm (P = 0.932), but had significant correlations (r = 0.975; P < 0.001). The prospectively undersampled results validated a good agreement with fully sampled images, with no significant differences in ventilation defect percentage but significantly higher signal-to-noise ratio values. CONCLUSION: The proposed algorithm outperformed classical undersampling methods, paving the way for future use of deep learning in real-time and accurate reconstruction of gas MRI.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Adulto , Idoso , Algoritmos , Asma/diagnóstico por imagem , Bronquiectasia/diagnóstico por imagem , Feminino , Análise de Fourier , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Inflamação/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prótons , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Reprodutibilidade dos Testes , Respiração , Estudos Retrospectivos , Razão Sinal-Ruído , Fumar , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tuberculose Pulmonar/diagnóstico por imagem , Adulto Jovem
6.
NMR Biomed ; 32(5): e4068, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843292

RESUMO

Pulmonary diseases usually result in changes of the blood-gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129 Xe MR via chemical shift saturation recovery (CSSR) and diffusion-weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood-gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath-hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g ), is proposed to evaluate the gas exchange function. Hyperpolarized 129 Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age-matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.


Assuntos
Suspensão da Respiração , Imageamento por Ressonância Magnética , Troca Gasosa Pulmonar , Isótopos de Xenônio/química , Adulto , Idoso , Difusão , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Tomografia Computadorizada por Raios X , Adulto Jovem
7.
Nano Lett ; 19(1): 441-448, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30560672

RESUMO

Nano contrast agents (Nano CA) are nanomaterials used to increase contrast in the medical magnetic resonance imaging (MRI). However, the related relaxation mechanism of the Nano CA is not clear yet and little significant breakthrough in relaxivity enhancement has been achieved. Herein, a new hydrophilic Gd-DOTA complex functionalized with different chain length of PEG was synthesized and incorporated into graphene quantum dots (GQD) to obtain paramagnetic graphene quantum dots (PGQD). We performed a variable-temperature and variable-field intensity NMR study in aqueous solution on the water exchange and rotational dynamics of three different chain lengths of PGQD. The optimal GQD with paramagnetic chain length shows a great improvement in performance on 1H NMR relaxometric studies. In vitro results demonstrated that the relaxivity of the designed PGQD could be controlled by regulating the PEG length, and its relaxivity was ∼16 times higher than that of current commercial MRI contrast agents (e.g., Gd-DTPA), on a "per Gd" basis. The relaxivity of the Nano CA can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the paramagnetic GQD with the enhanced T1 relaxivity. The fabricated PGQDs with suitable PEG length got the best relaxivity at 1.5 T. After intravenous injection, its feeding process by solid tumor could even be monitored by clinically used 1.5 T MRI scanners. This research will also provide an excellent platform for the design and synthesis of highly effective MR contrast agents.


Assuntos
Meios de Contraste/química , Grafite/química , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Quelantes/química , Gadolínio/química , Compostos Heterocíclicos/química , Humanos , Espectroscopia de Ressonância Magnética , Nanoestruturas/química , Neoplasias/patologia , Compostos Organometálicos/química , Pontos Quânticos/química , Água/química
8.
J Magn Reson ; 290: 29-37, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29549792

RESUMO

Dynamic hyperpolarized (HP) 129Xe MRI is able to visualize the process of lung ventilation, which potentially provides unique information about lung physiology and pathophysiology. However, the longitudinal magnetization of HP 129Xe is nonrenewable, making it difficult to achieve high image quality while maintaining high temporal-spatial resolution in the pulmonary dynamic MRI. In this paper, we propose a new accelerated dynamic HP 129Xe MRI scheme incorporating the low-rank, sparse and gas-inflow effects (L + S + G) constraints. According to the gas-inflow effects of HP gas during the lung inspiratory process, a variable-flip-angle (VFA) strategy is designed to compensate for the rapid attenuation of the magnetization. After undersampling k-space data, an effective reconstruction algorithm considering the low-rank, sparse and gas-inflow effects constraints is developed to reconstruct dynamic MR images. In this way, the temporal and spatial resolution of dynamic MR images is improved and the artifacts are lessened. Simulation and in vivo experiments implemented on the phantom and healthy volunteers demonstrate that the proposed method is not only feasible and effective to compensate for the decay of the magnetization, but also has a significant improvement compared with the conventional reconstruction algorithms (P-values are less than 0.05). This confirms the superior performance of the proposed designs and their ability to maintain high quality and temporal-spatial resolution.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio , Algoritmos , Artefatos , Simulação por Computador , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/fisiologia , Pulmão/fisiopatologia , Imagens de Fantasmas , Mecânica Respiratória
9.
NMR Biomed ; 30(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28508450

RESUMO

During the measurement of hyperpolarized 129 Xe magnetic resonance imaging (MRI), the diffusion-weighted imaging (DWI) technique provides valuable information for the assessment of lung morphometry at the alveolar level, whereas the chemical shift saturation recovery (CSSR) technique can evaluate the gas exchange function of the lungs. To date, the two techniques have only been performed during separate breaths. However, the request for multiple breaths increases the cost and scanning time, limiting clinical application. Moreover, acquisition during separate breath-holds will increase the measurement error, because of the inconsistent physiological status of the lungs. Here, we present a new method, referred to as diffusion-weighted chemical shift saturation recovery (DWCSSR), in order to perform both DWI and CSSR within a single breath-hold. Compared with sequential single-breath schemes (namely the 'CSSR + DWI' scheme and the 'DWI + CSSR' scheme), the DWCSSR scheme is able to significantly shorten the breath-hold time, as well as to obtain high signal-to-noise ratio (SNR) signals in both DWI and CSSR data. This scheme enables comprehensive information on lung morphometry and function to be obtained within a single breath-hold. In vivo experimental results demonstrate that DWCSSR has great potential for the evaluation and diagnosis of pulmonary diseases.


Assuntos
Gases/metabolismo , Pulmão/anatomia & histologia , Pulmão/fisiologia , Imageamento por Ressonância Magnética , Respiração , Isótopos de Xenônio/metabolismo , Animais , Simulação por Computador , Imagem de Difusão por Ressonância Magnética , Ratos Sprague-Dawley , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA