Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Drug Des Devel Ther ; 18: 3175-3189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071816

RESUMO

Purpose: To clarify the significance of mitochondria-related differentially expressed genes (MTDEGs) in UC carcinogenesis through a bioinformatics analysis and provide potential therapeutic targets for patients with UC associated colorectal cancer. Methods: Microarray GSE37283 was utilized to investigate differentially expressed genes (DEGs) in UC and UC with neoplasia (UCN). MTDEGs were identified by intersecting DEGs with human mitochondrial genes. Utilizing LASSO and random forest analyses, we identified three crucial genes. Subsequently, using ROC curve to investigate the predictive ability of three key genes. Following, three key genes were confirmed in AOM/DSS mice model by Real-time PCR. Finally, single-sample gene set enrichment analysis (ssGSEA) was employed to explore the correlation between the hub genes and immune cells infiltration in UC carcinogenesis. Results: The three identified hub MTDEGs (HMGCS2, MAVS, RDH13) may exhibit significant diagnostic specificity in the transition from UC to UCN. Real-time PCR assay further confirmed that the expressions of HMGCS2 and RDH13 were significantly downregulated in UCN mice than that in UC mice. ssGSEA analysis revealed the hub genes were highly associated with CD56dim natural killer cells. Conclusion: RDH13, HMGCS2, and MAVS may become diagnostic indicators and potential biomarkers for UCN. Our research has the potential to enhance our understanding of the mechanisms underlying carcinogenesis in UC.


Assuntos
Colite Ulcerativa , Neoplasias Colorretais , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Animais , Camundongos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Biologia Computacional
2.
Int J Biol Sci ; 20(8): 3140-3155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904029

RESUMO

Cysteine-rich angiogenic inducer 61 (CYR61), also called CCN1, has long been characterized as a secretory protein. Nevertheless, the intracellular function of CYR61 remains unclear. Here, we found that CYR61 is important for proper cell cycle progression. Specifically, CYR61 interacts with microtubules and promotes microtubule polymerization to ensure mitotic entry. Moreover, CYR61 interacts with PLK1 and accumulates during the mitotic process, followed by degradation as mitosis concludes. The proteolysis of CYR61 requires the PLK1 kinase activity, which directly phosphorylates two conserved motifs on CYR61, enhancing its interaction with the SCF E3 complex subunit FBW7 and mediating its degradation by the proteasome. Mutations of phosphorylation sites of Ser167 and Ser188 greatly increase CYR61's stability, while deletion of CYR61 extends prophase and metaphase and delays anaphase onset. In summary, our findings highlight the precise control of the intracellular CYR61 by the PLK1-FBW7 pathway, accentuating its significance as a microtubule-associated protein during mitotic progression.


Assuntos
Proteínas de Ciclo Celular , Proteína Rica em Cisteína 61 , Microtúbulos , Mitose , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Mitose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteína Rica em Cisteína 61/metabolismo , Proteína Rica em Cisteína 61/genética , Microtúbulos/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Células HeLa , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
3.
Adv Sci (Weinh) ; 11(28): e2401327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38725147

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease, with limited therapeutic options available. Impaired autophagy resulting from aberrant TRB3/p62 protein-protein interactions (PPIs) contributes to the progression of IPF. Restoration of autophagy by modulating the TRB3/p62 PPIs has rarely been reported for the treatment of IPF. Herein, peptide nanofibers are developed that specifically bind to TRB3 protein and explored their potential as a therapeutic approach for IPF. By conjugating with the self-assembling fragment (Ac-GFFY), a TRB3-binding peptide motif A2 allows for the formation of nanofibers with a stable α-helix secondary structure. The resulting peptide (Ac-GFFY-A2) nanofibers exhibit specific high-affinity binding to TRB3 protein in saline buffer and better capacity of cellular uptake to A2 peptide. Furthermore, the TRB3-targeting peptide nanofibers efficiently interfere with the aberrant TRB3/p62 PPIs in activated fibroblasts and fibrotic lung tissue of mice, thereby restoring autophagy dysfunction. The TRB3-targeting peptide nanofibers inhibit myofibroblast differentiation, collagen production, and fibroblast migration in vitro is demonstrated, as well as bleomycin-induced pulmonary fibrosis in vivo. This study provides a supramolecular method to modulate PPIs and highlights a promising strategy for treating IPF diseases by restoring autophagy.


Assuntos
Autofagia , Bleomicina , Modelos Animais de Doenças , Nanofibras , Fibrose Pulmonar , Nanofibras/química , Animais , Autofagia/efeitos dos fármacos , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Camundongos Endogâmicos C57BL , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Peptídeos/farmacologia
4.
Cell Rep ; 43(3): 113963, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492218

RESUMO

T cell infiltration into white adipose tissue (WAT) drives obesity-induced adipose inflammation, but the mechanisms of obesity-induced T cell infiltration into WAT remain unclear. Our single-cell RNA sequencing reveals a significant impact of adipose stem cells (ASCs) on T cells. Transplanting ASCs from obese mice into WAT enhances T cell accumulation. C-C motif chemokine ligand 5 (CCL5) is upregulated in ASCs as early as 4 weeks of high-fat diet feeding, coinciding with the onset of T cell infiltration into WAT during obesity. ASCs and bone marrow transplantation experiments demonstrate that CCL5 from ASCs plays a crucial role in T cell accumulation during obesity. The production of CCL5 in ASCs is induced by tumor necrosis factor alpha via the nuclear factor κB pathway. Overall, our findings underscore the pivotal role of ASCs in regulating T cell accumulation in WAT during the early phases of obesity, emphasizing their importance in modulating adaptive immunity in obesity-induced adipose inflammation.


Assuntos
Tecido Adiposo , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Inflamação/patologia , Células-Tronco/metabolismo
5.
Int J Surg ; 110(6): 3778-3794, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446845

RESUMO

BACKGROUND: Omentoplasty is commonly used in various surgeries. However, its effectiveness is unsure due to lack of convincing data and research. To clarify the impact of omentoplasty on postoperative complications of various procedures, this systematic review and meta-analysis was performed. METHODS: A systematic review of published literatures from four databases: PubMed, Web of Science, Cochrane Library, and Embase before 14 July 2022. The authors primarily included publications on five major surgical operations performed in conjunction with omentoplasty: thoracic surgery, esophageal surgery, gastrointestinal surgery, pelvi-perineal surgery, and liver surgery. The protocol was registered in PROSPERO. RESULTS: This review included 25 273 patients from 91 studies ( n =9670 underwent omentoplasty). Omentoplasty was associated with a lower risk of overall complications particularly in gastrointestinal [relative risk (RR) 0.53; 95% CI: 0.39-0.72] and liver surgery (RR 0.54; 95% CI: 0.39-0.74). Omentoplasty reduced the risk of postoperative infection in thoracic (RR 0.38; 95% CI: 0.18-0.78) and liver surgery (RR 0.39; 95% CI: 0.29-0.52). In patients undergoing esophageal (RR 0.89; 95% CI: 0.80-0.99) and gastrointestinal (RR 0.28; 95% CI: 0.23-0.34) surgery with a BMI greater than 25, omentoplasty is significantly associated with a reduced risk of overall complications compared to patients with normal BMI. No significant differences were found in pelvi-perineal surgery, except infection in patients whose BMI ranged from 25 kg/m 2 to 29.9 kg/m 2 (RR 1.25; 95% CI: 1.04-1.50) and anastomotic leakage in patients aged over 60 (RR 0.59; 95% CI: 0.39-0.91). CONCLUSION: Omentoplasty can effectively prevent postoperative infection. It is associated with a lower incidence of multiple postoperative complications in gastrointestinal and liver surgery.


Assuntos
Omento , Complicações Pós-Operatórias , Humanos , Omento/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle
6.
Adv Healthc Mater ; 13(10): e2303472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37985951

RESUMO

Current molecular photoacoustic (PA) probes are designed with either stimulus-turned "on" or assembly-enhanced signals to trace biological analytes/events. PA probes based on the nature-derived click reaction between 2-cyano-6-aminobenzothiazole (CBT) and cysteine (Cys) (i.e., CBT-Cys click reaction) possess both "turn-on" and "enhanced" PA signals; and thus, should have higher sensitivity. Nevertheless, such PA probes, particularly those for sensitive imaging of tumor hypoxia, remain scarce. Herein, a PA probe NI-Cys(StBu)-Dap(IR780)-CBT (NI-C-CBT) is rationally designed, which after being internalized by hypoxic tumor cells, is cleaved by nitroreductase under the reduction condition to yield cyclic dimer C-CBT-Dimer to turn the PA signal "ON" and subsequently assembled into nanoparticles C-CBT-NPs with additionally enhanced PA signal ("Enhanced"). NI-C-CBT exhibits 1.7-fold "ON" and 3.2-fold overall "Enhanced" PA signals in vitro. Moreover, it provides 1.9-fold and 2.8-fold overall enhanced PA signals for tumor hypoxia imaging in HeLa cells and HeLa tumor-bearing mice, respectively. This strategy is expected to be widely applied to design more "smart" PA probes for sensitive imaging of important biological events in vivo in near future.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Humanos , Animais , Camundongos , Células HeLa , Hipóxia Tumoral , Diagnóstico por Imagem , Nitrorredutases , Técnicas Fotoacústicas/métodos
7.
Hepatol Int ; 17(4): 915-926, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37012542

RESUMO

BACKGROUND: The evidence of transcatheter arterial chemoembolization (TACE) plus tyrosine kinase inhibitor and immune checkpoint inhibitor in unresectable hepatocellular carcinoma (HCC) was limited. This study aimed to evaluate the role of TACE plus apatinib (TACE + A) and TACE combined with apatinib plus camrelizumab (TACE + AC) in patients with unresectable HCC. METHODS: This study retrospectively reviewed patients with unresectable HCC who received TACE + A or TACE + AC in 20 centers of China from January 1, 2019 to June 31, 2021. Propensity score matching (PSM) at 1:1 was performed to reduce bias. Treatment-related adverse events (TRAEs), overall survival (OS), progression-free survival (PFS), objective response rate (ORR) and disease control rate (DCR) were collected. RESULTS: A total of 960 eligible patients with HCC were included in the final analysis. After PSM, there were 449 patients in each group, and the baseline characteristics were balanced between two groups. At data cutoff, the median follow-up time was 16.3 (range: 11.9-21.4) months. After PSM, the TACE + AC group showed longer median OS (24.5 vs 18.0 months, p < 0.001) and PFS (10.8 vs 7.7 months, p < 0.001) than the TACE + A group; the ORR (49.9% vs 42.5%, p = 0.002) and DCR (88.4% vs 84.0%, p = 0.003) of the TACE + AC group were also higher than those in the TACE + A group. Fever, pain, hypertension and hand-foot syndrome were the more common TRAEs in two groups. CONCLUSIONS: Both TACE plus apatinib and TACE combined with apatinib plus camrelizumab were feasible in patients with unresectable HCC, with manageable safety profiles. Moreover, TACE combined with apatinib plus camrelizumab showed additional benefit.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Antineoplásicos/uso terapêutico , Terapia Combinada
8.
Front Genet ; 14: 1139351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873934

RESUMO

Background: Polycythemia Vera (PV) is a type of typical Myeloproliferative Neoplasms (MPNs) characterized with excessive erythropoiesis and thrombosis. Anoikis is a special programmed cell death mode induced by the adhesion disorder between cells and extracellular matrix (ECM) or adjacent cells facilitating cancer metastasis. However, few studies have focused on the role of anoikis in PV, especially on the development of PV. Methods: The microarray and RNA-seq results were screened from the Gene Expression Omnibus (GEO) database and the anoikis-related genes (ARGs) were downloaded from Genecards. The functional enrichment analysis of intersecting differentially expressed genes (DEGs) and protein-protein interaction (PPI) network analysis were performed to discover hub genes. The hub genes expression was tested in the training (GSE136335) and validation cohort (GSE145802), and RT-qPCR was performed to verify the gene expression in PV mice. Results: In the training GSE136335, a total of 1,195 DEGs was obtained from Myeloproliferative Neoplasm (MPN) patients compared with controls, among which 58 were anoikis-related DEGs. The significant enrichment of the apoptosis and cell adhesion pathways (i.e., cadherin binding) were shown in functional enrichment analysis. The PPI network was conducted to identify top five hub genes (CASP3, CYCS, HIF1A, IL1B, MCL1). The expression of CASP3 and IL1B were significantly upregulated both in validation cohort and PV mice and downregulated after treatment, suggesting that CASP3 and IL1B could be important indicators for disease surveillance. Conclusion: Our research revealed a relationship between anoikis and PV for the first time by combined analysis of gene level, protein interaction and functional enrichment, allowing novel insights into mechanisms of PV. Moreover, CASP3 and IL1B may become promising indicators of PV development and treatment.

9.
Small Methods ; 7(5): e2201416, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965100

RESUMO

Immunogenic cell death (ICD) approaches by encumbering mitochondrial functions provide great promise for the treatment of malignant tumors, but these kinds of ICD strategies are still in their infancy. Here, one multifunctional drug-loaded, cascade-targeted, and enzyme-instructed self-assembling peptide nanomedicine (Comp. 4) for ICD-based cancer therapy is constructed. Comp. 4 consists of 1) lonidamine (LND) that specifically interferes with mitochondrial functions; 2) a programmed death ligand 1 (PD-L1) binding peptide sequence (NTYYEDQG) and a mitochondria-specific motif (triphenylphosphonium, TPP) that can sequentially control the cell membrane and mitochondria targeting capacities, respectively; and 3) a -GD FD FpD Y- assembly core to in situ organize peptide assemblies responsive to alkaline phosphatase (ALP). Comp. 4 demonstrates noticeable structural and morphological transformations in the presence of ALP and produces peptide assemblies in mouse colon cancer cells (CT26) with high expressions of both ALP and PD-L1. Moreover, the presence of PD-L1- and mitochondria-specific motifs can assist Comp. 4 for effective endocytosis and endosomal escape, forming peptide assemblies and delivering LND into mitochondria. Consequently, Comp. 4 shows superior capacities to in vivo induce abundant mitochondrial oxidative stress, provoke robust ICD responses, and produce an immunogenic tumor microenvironment, successfully inhibiting CT26 tumor growth by eliciting a systemic ICD-based antitumor immunity.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Camundongos , Morte Celular Imunogênica , Imunoterapia , Fosfatase Alcalina , Peptídeos , Corantes , Neoplasias/terapia
10.
J Am Chem Soc ; 145(8): 4366-4371, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669158

RESUMO

Innovative methods for engineering cancer cell membranes promise to manipulate cell-cell interactions and boost cell-based cancer therapeutics. Here, we illustrate an in situ approach to selectively modify cancer cell membranes by employing an enzyme-instructed peptide self-assembly (EISA) strategy. Using three phosphopeptides (pY1, pY2, and pY3) targeting the membrane-bound epidermal growth factor receptor (EGFR) and differing in just one phosphorylated tyrosine, we reveal that site-specific phosphorylation patterns in pY1, pY2, and pY3 can distinctly command their preorganization levels, self-assembling kinetics, and spatial distributions of the resultant peptide assemblies in cellulo. Overall, pY1 is the most capable of producing preorganized assemblies and shows the fastest dephosphorylation reaction in the presence of alkaline phosphatase (ALP), as well as the highest binding affinity for EGFR after dephosphorylation. Consequently, pY1 exhibits the greatest capacity to construct stable peptide assemblies on cancer cell membranes with the assistance of both ALP and EGFR. We further use peptide-protein and peptide-peptide co-assembly strategies to apply two types of antigens, namely ovalbumin (OVA) protein and dinitrophenyl (DNP) hapten respectively, on cancer cell membranes. This study demonstrates a very useful technique for the in situ construction of membrane-bound peptide assemblies around cancer cells and implies a versatile strategy to artificially enrich cancer cell membrane components for potential cancer immunotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Receptores ErbB/metabolismo , Membrana Celular/metabolismo , Fosforilação , Fosfopeptídeos/metabolismo , Fosfatase Alcalina/metabolismo
11.
Acta Pharm Sin B ; 12(6): 2740-2750, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35755291

RESUMO

Immunogenic cell death (ICD) plays a major role in cancer immunotherapy by stimulating specific T cell responses and restoring the antitumor immune system. However, effective type II ICD inducers without biotoxicity are still very limited. Herein, a tentative drug- or photosensitizer-free strategy was developed by employing enzymatic self-assembly of the peptide F-pY-T to induce mitochondrial oxidative stress in cancer cells. Upon dephosphorylation catalyzed by alkaline phosphatase overexpressed on cancer cells, the peptide F-pY-T self-assembled to form nanoparticles, which were subsequently internalized. These affected the morphology of mitochondria and induced serious reactive oxygen species production, causing the ICD characterized by the release of danger-associated molecular patterns (DAMPs). DAMPs enhanced specific immune responses by promoting the maturation of DCs and the intratumoral infiltration of tumor-specific T cells to eradicate tumor cells. The dramatic immunotherapeutic capacity could be enhanced further by combination therapy of F-pY-T and anti-PD-L1 agents without visible biotoxicity in the main organs. Thus, our results revealed an alternative strategy to induce efficient ICD by physically promoting mitochondrial oxidative stress.

12.
Biochem Biophys Res Commun ; 573: 62-68, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34388456

RESUMO

Ring-finger protein 126 (RNF126), an E3 ubiquitin ligase, plays crucial roles in various biological processes, including cell proliferation, DNA damage repair, and intracellular vesicle trafficking. Whether RNF126 is modulated by posttranslational modifications is poorly understood. Here, we show that PARP1 interacts with and poly(ADP)ribosylates RNF126, which then recruits the PAR-binding E3 ubiquitin ligase CHFR to promote ubiquitination and degradation of RNF126. Moreover, RNF126 is required for the activation of ATR-Chk1 signaling induced by either irradiation (IR) or a PARP inhibitor (PARPi), and depletion of RNF126 increases the sensitivity of triple-negative breast cancer (TNBC) cells to PARPi treatment. Our findings suggest that PARPi-mediated upregulation of RNF126 protein stability contributes to TNBC cell resistance to PARPi. Therefore, targeting the E3 ubiquitin ligase RNF126 may be a novel treatment for overcoming the resistance of TNBC cells to PARPi in clinical trials.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Regulação para Cima
13.
Nanoscale ; 13(24): 10891-10897, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34125124

RESUMO

In situ self-assembly of prodrug molecules into nanomedicine can elevate the therapeutic efficacy of anticancer medications by enhancing the targeting and enrichment of anticancer drugs at tumor sites. However, the disassembly and biodegradation of nanomedicine after enrichment prevents the further improvement of the efficiency, and avoiding such disassembly and biodegradation remains a challenge. Herein, we rationally designed a tandem molecular self-assembling prodrug that could selectively improve the therapeutic efficacy of HCPT against lung cancer by two orders of magnitude. The tandem molecular self-assembly utilized an elevated level of alkaline phosphatase and reductase in lung cancer cells. The prodrug first self-assembled into nanofibers by alkaline phosphatase catalysis and was internalized more efficiently by lung cancer cells than free HCPT. The resulting nanofiber was next catalyzed by intracellular reductase to form a more hydrophobic nanofiber that prevented the disassembly and biodegradation, which further significantly improved the efficacy of HCPT against lung cancer both in vitro and in vivo.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanofibras , Pró-Fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Nanomedicina , Pró-Fármacos/farmacologia
14.
Microb Pathog ; 156: 104932, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33964417

RESUMO

BACKGROUND: Helicobacter pylori is a pathogen involved in several gastroduodenal diseases, whose infection mechanisms have not been completely confirmed. To study the specific mechanism of gastropathy caused by H. pylori, we analyzed the gene microarray of gastric mucosa and gastric cells infected by H. pylori through bioinformatics analysis. METHODS: We downloaded GSE60427 and GSE74492 from the Gene Expression Omnibus (GEO) database, screened differentially expressed genes (DEGs), and identified the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) through R software. The Search Tool for the Retrieval of Interacting Genes (STRING) was applied to establish a protein-protein interaction (PPI) network and Cytoscape was used to identify the top seven hub genes. Besides, we also constructed the gene-microRNA(gene-miRNA) interaction through the miRTarBase v8.0 database by using the NetworkAnalyst tool. RESULTS: One hundred and fifteen DEGs were screened out, with 54 genes up-regulated and 61 genes down-regulated, among which seven hub genes, including "IGF1R," "APOE," "IRS1," "ATF3," "LCN2," "IL2RG," and "PI3," were considered as the main regulatory proteins in gastric cells when infected by H. pylori. CONCLUSION: In this study, hub genes and related signal enrichment pathways of gastropathy infected by H. pylori were analyzed through bioinformatics analysis based on the GSE60427 and GSE74492 datasets.


Assuntos
Helicobacter pylori , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Helicobacter pylori/genética
15.
Hum Genomics ; 15(1): 22, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875006

RESUMO

BACKGROUND: Currently, Chlamydia trachomatis-specific host defense mechanisms in humans remain poorly defined. To study the characteristics of host cells infected early with Chlamydia trachomatis, we used bioinformatics methods to analyze the RNA transcription profiles of the conjunctiva, fallopian tubes, and endometrium in humans infected with Chlamydia trachomatis. METHOD: The gene expression profiles of GSE20430, GSE20436, GSE26692, and GSE41075 were downloaded from the Gene Expression Synthesis (GEO) database. Then, we obtained the differentially expressed genes (DEGs) through the R 4.0.1 software. STRING was used to construct protein-protein interaction (PPI) networks; then, the Cytoscape 3.7.2 software was used to visualize the PPI and screen hub genes. GraphPad Prism 8.0 software was used to verify the expression of the hub gene. In addition, the gene-miRNA interaction was constructed on the NetworkAnalyst 3.0 platform using the miRTarBase v8.0 database. RESULTS: A total of 600 and 135 DEGs were screened out in the conjunctival infection group and the reproductive tract infection group, respectively. After constructing a PPI network and verifying the hub genes, CSF2, CD40, and CSF3 in the reproductive tract infection group proved to have considerable statistical significance. CONCLUSION: In our research, the key genes in the biological process of reproductive tract infection with Chlamydia trachomatis were clarified through bioinformatics analysis. These hub genes may be further used in clinical treatment and clinical diagnosis.


Assuntos
Antígenos CD40/genética , Chlamydia trachomatis/genética , Túnica Conjuntiva/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Infecções do Sistema Genital/genética , Chlamydia trachomatis/patogenicidade , Biologia Computacional , Túnica Conjuntiva/microbiologia , Túnica Conjuntiva/parasitologia , Tubas Uterinas/metabolismo , Tubas Uterinas/microbiologia , Tubas Uterinas/patologia , Feminino , Redes Reguladoras de Genes/genética , Interações Hospedeiro-Patógeno/genética , Humanos , MicroRNAs/genética , Mapas de Interação de Proteínas/genética , Infecções do Sistema Genital/microbiologia , Infecções do Sistema Genital/patologia , Transdução de Sinais/genética , Software
16.
World J Surg Oncol ; 19(1): 42, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563292

RESUMO

BACKGROUND: Xpert Bladder Cancer is a detection method developed in recent years, designed with the functions of integrating sample automatically, nucleic acid amplification, and target sequence detection. It is a urine assay targeting five mRNAs (CRH, IGF2, UPK1B, ANXA10, and ABL1). The purpose of this article is to review the accuracy of Xpert Bladder Cancer in the follow-up diagnosis of bladder cancer and evaluate the role of Xpert Bladder Cancer in detecting the recurrence of non-muscle-invasive bladder cancer in the round. METHODS: In the database of Embase, PubMed, Web of Science, and Cochrane Library, the articles published up to October 13, 2020, were searched and screened based on the exclusion and inclusion criteria, and data were extracted from the included studies. The sensitivity, specificity, negative likelihood ratio, positive likelihood ratio summary of receiver operating characteristic curves, and diagnostic odds ratio were combined by the Meta-DiSc 1.4 software. The Stata 12.0 software was used to obtain the assessment of publication bias. RESULTS: A total of 8 articles involving eight fourfold tables were finally identified. The pooled sensitivity and specificity of Xpert Bladder Cancer in the diagnosis of bladder cancer were 0.71 and 0.81, respectively. The positive likelihood ratio and negative likelihood ratio were 3.74 and 0.34, respectively. The area under the curve was 0.8407. The diagnostic odds ratio was 11.99. Deeks' funnel plot asymmetry test manifested no publication bias. CONCLUSIONS: In summary, Xpert Bladder Cancer presents high accuracy and specificity in monitoring bladder cancer compared with cystoscopy. More researches are still required to further confirm this conclusion.


Assuntos
Carcinoma , Neoplasias da Bexiga Urinária , Humanos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Prognóstico , RNA Mensageiro/genética , Sensibilidade e Especificidade , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética
17.
Adv Sci (Weinh) ; 7(20): 2000157, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101843

RESUMO

Repair of DNA double-strand breaks (DSBs) is essential for genome integrity, and is accompanied by transcriptional repression at the DSB regions. However, the mechanisms how DNA repair induces transcriptional inhibition remain elusive. Here, it is identified that BRD7 participates in DNA damage response (DDR) and is recruited to the damaged chromatin via ATM signaling. Mechanistically, BRD7 joins the polycomb repressive complex 2 (PRC2), the nucleosome remodeling and histone deacetylation (NuRD) complex at the damaged DNA and recruits E3 ubiquitin ligase RNF168 to the DSBs. Furthermore, ATM-mediated BRD7 phosphorylation is required for recruitment of the PRC2 complex, NuRD complex, DSB sensor complex MRE11-RAD50-NBS1 (MRN), and RNF168 to the active transcription sites at DSBs, resulting in transcriptional repression and DNA repair. Moreover, BRD7 deficiency sensitizes cancer cells to PARP inhibition. Collectively, BRD7 is crucial for DNA repair and DDR-mediated transcription repression, which may serve as a therapeutic target. The findings identify the missing link between DNA repair and transcription regulation that maintains genome integrity.

18.
Theranostics ; 10(22): 9984-10000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929329

RESUMO

Rationale: Neoadjuvant chemotherapy has become the standard treatment of locally advanced breast cancer. Antimicrotubule drugs and DNA-damaging drugs are the most popular medicines used for neoadjuvant chemotherapy. However, we are unable to predict which chemotherapeutic drug will benefit to an individual patient. PARK2 as a tumor suppressor in breast cancer has been reported. While the role of PARK2 in chemotherapy response remains unknown. In this study, we explore the impact of PARK2 on chemosensitivity in breast cancer. Methods: PARK2 expression in breast cancer patients with different neoadjuvant chemotherapeutic regimens was studied using immunohistochemistry. Data was correlated to disease-free survival (DFS), overall survival and pathologic complete response (pCR). The functional roles of PARK2 were demonstrated by a series of in vitro and in vivo experiments. Including mass spectrometry, Co-immunoprecipitation, isolation of subcellular fractionation, fluorescence microscopy, in vivo ubiquitination assay and luciferase analyses. Results: Highly expressed PARK2 predicted better response to antimicrotubule drugs-containing regimen associated with higher rate of pathologic complete response (pCR). In contrast, PARK2 expression did not predict response to the DNA-damaging drugs regimen. Following antimicrotubule drugs treatment, levels of PARK2 was upregulated due to the repression of STAT3-mediated transcriptional inhibition of PARK2. Moreover, overexpression of PARK2 specifically rendered cells more sensitive to antimicrotubule drugs, but not to DNA-damaging drugs. Depletion of PARK2 enhanced resistance to antimicrotubule drugs. Mechanistically, PARK2 markedly activated the mitochondrial pathway of apoptosis after exposure to antimicrotubule drugs. This occurred through downregulating the antiapoptotic protein, phospho-BCL-2. BCL-2 phosphorylation can be specifically induced by antimicrotubule drugs, whereas DNA-damaging drugs do not. Notably, PARK2 interacted with phospho-BCL-2 (Ser70) and promoted ubiquitination of BCL-2 in an E3 ligase-dependent manner. Hence, PARK2 significantly enhanced the chemosensitivity of antimicrotubule drugs both in vitro and in vivo, while loss-of-function PARK2 mutants did not. Conclusions: Our findings explained why PARK2 selectively confers chemosensitivity to antimicrotubule drugs, but not to DNA-damaging drugs. In addition, we identified PARK2 as a novel mediator of antimicrotubule drugs sensitivity, which can predict response of breast cancer patients to antimicrotubule drugs-containing regime.


Assuntos
Antineoplásicos/farmacologia , Apoptose/fisiologia , Microtúbulos/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Intervalo Livre de Doença , Regulação para Baixo/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Células MCF-7 , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
19.
Theranostics ; 10(23): 10823-10837, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929382

RESUMO

Rationale: The forkhead box A1 (FOXA1) is a crucial transcription factor in initiation and development of breast, lung and prostate cancer. Previous studies about the FOXA1 transcriptional network were mainly focused on protein-coding genes. Its regulatory network of long non-coding RNAs (lncRNAs) and their role in FOXA1 oncogenic activity remains unknown. Methods: The Cancer Genome Atlas (TCGA) data, RNA-seq and ChIP-seq data were used to analyze FOXA1 regulated lncRNAs. RT-qPCR was used to detect the expression of DSCAM-AS1, RT-qPCR and Western blotting were used to determine the expression of FOXA1, estrogen receptor α (ERα) and Y box binding protein 1 (YBX1). RNA pull-down and RIP-qPCR were employed to investigate the interaction between DSCAM-AS1 and YBX1. The effect of DSCAM-AS1 on malignant phenotypes was examined through in vitro and in vivo assays. Results: In this study, we conducted a global analysis of FOXA1 regulated lncRNAs. For detailed analysis, we chose lncRNA DSCAM-AS1, which is specifically expressed in lung adenocarcinoma, breast and prostate cancer. The expression level of DSCAM-AS1 is regulated by two super-enhancers (SEs) driven by FOXA1. High expression levels of DSCAM-AS1 was associated with poor prognosis. Knockout experiments showed DSCAM-AS1 was essential for the growth of xenograft tumors. Moreover, we demonstrated DSCAM-AS1 can regulate the expression of the master transcriptional factor FOXA1. In breast cancer, DSCAM-AS1 was also found to regulate ERα. Mechanistically, DSCAM-AS1 interacts with YBX1 and influences the recruitment of YBX1 in the promoter regions of FOXA1 and ERα. Conclusion: Our study demonstrated that lncRNA DSCAM-AS1 was transcriptionally activated by super-enhancers driven by FOXA1 and exhibited lineage-specific expression pattern. DSCAM-AS1 can promote cancer progression by interacting with YBX1 and regulating expression of FOXA1 and ERα.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , RNA Longo não Codificante/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional , Conjuntos de Dados como Assunto , Progressão da Doença , Elementos Facilitadores Genéticos/genética , Receptor alfa de Estrogênio/genética , Retroalimentação Fisiológica , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Prognóstico , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo , RNA-Seq , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Cancer ; 10(27): 6837-6847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839818

RESUMO

Regulator of chromosome condensation 2 (RCC2), also known as TD-60, is an RCC1 family member and plays an essential role in mitosis. However, the roles of RCC2 in breast cancer are still unclear. In this study, RCC2 was found to exert oncogenic activities in breast cancer. Samples of breast cancer tissue revealed an increased level of RCC2 and a high level of RCC2 was associated with poor overall survival rate of breast cancer patients. Overexpression of RCC2 significantly enhanced cell proliferation and migration abilities of breast cancer cells in vitro and in vivo. Mechanistically, RCC2 induced epithelial-mesenchymal transition (EMT) through the activation of Wnt signaling pathway. Collectively, our study indicates that RCC2 contributes to breast cancer progression and functions as an important regulator of EMT through the activation of Wnt signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA