Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Acupunct Med ; 42(3): 146-154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702866

RESUMO

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.


Assuntos
Apoptose , Modelos Animais de Doenças , Eletroacupuntura , Interleucina 22 , Interleucinas , Degeneração do Disco Intervertebral , Janus Quinase 2 , Núcleo Pulposo , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citologia , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Ratos , Interleucinas/metabolismo , Interleucinas/genética , Masculino , Humanos , Vértebras Cervicais
2.
Genesis ; 62(3): e23599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764323

RESUMO

BACKGROUND: Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS: The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS: CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION: CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Claudinas , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , MicroRNAs , Invasividade Neoplásica , RNA Circular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Animais , Movimento Celular/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Camundongos , Linhagem Celular Tumoral , RNA Circular/genética , RNA Circular/metabolismo , Claudinas/genética , Claudinas/metabolismo , Camundongos Nus , Feminino , Masculino
3.
Dermatol Surg ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38748664

RESUMO

BACKGROUND: Alopecia significantly affects the mental health and social relationship of women since childbearing age, highlighting the need for a safe, effective, and convenient treatment. METHODS: The authors have conducted a prospective self-controlled trial involving 15 female patients at childbearing age with alopecia. These patients received a subcutaneous scalp injection of platelet-rich plasma once every 4 weeks for 3 treatments in total. Outcome measurements were included below: changes in hair density (hair/cm2), hair follicle density (hair follicle/cm2), and overall photographic assessment (improved or not) at 4, 12, and 24 weeks right after the first treatment. RESULTS: Comparing the photographs taken before and after the intervention, 67% of patients' hair density increased from 151 ± 39.82 hairs/cm2 (preintervention) to 170.96 ± 37.14 hairs/cm2 (at 24-week follow-up), representing an approximate increase of 19 hairs/cm2. Meanwhile, hair follicle density increased by approximately 15 follicles/cm2 after 24 weeks since the first treatment, rising from 151.04 ± 41.99 follicles/cm2 to 166.72 ± 37.13 follicles/cm2. The primary adverse reactions observed were local swelling and pain due to injections. CONCLUSION: Local injection of nonactivated platelet-rich plasma with low leukocytes concentration could be an effective strategy to alleviate alopecia symptoms in female patients.

4.
Cell Death Dis ; 15(4): 298, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678042

RESUMO

Irradiation (IR) induces immunogenic cell death (ICD) in tumors, but it rarely leads to the abscopal effect (AE); even combining IR with immune checkpoint inhibitors has shown only anecdotal success in inducing AEs. In this study, we aimed to enhance the IR-induced immune response and generate reproducible AEs using the anti-alcoholism drug, disulfiram (DSF), complexed with copper (DSF/Cu) to induce tumor ICD. We measured ICD in vitro and in vivo. In mouse tumor models, DSF/Cu was injected intratumorally followed by localized tumor IR, creating an in situ cancer vaccine. We determined the anticancer response by primary tumor rejection and assessed systemic immune responses by tumor rechallenge and the occurrence of AEs relative to spontaneous lung metastasis. In addition, we analyzed immune cell subsets and quantified proinflammatory and immunosuppressive chemokines/cytokines in the tumor microenvironment (TME) and blood of the vaccinated mice. Immune cell depletion was investigated for its effects on the vaccine-induced anticancer response. The results showed that DSF/Cu and IR induced more potent ICD under hypoxia than normoxia in vitro. Low-dose intratumoral (i.t.) injection of DSF/Cu and IR(12Gy) demonstrated strong anti-primary and -rechallenged tumor effects and robust AEs in mouse models. These vaccinations also increased CD8+ and CD4+ cell numbers while decreasing Tregs and myeloid-derived suppressor cells in the 4T1 model, and increased CD8+, dendritic cells (DC), and decreased Treg cell numbers in the MCa-M3C model. Depleting both CD8+ and CD4+ cells abolished the vaccine's anticancer response. Moreover, vaccinated tumor-bearing mice exhibited increased TNFα levels and reduced levels of immunosuppressive chemokines/cytokines. In conclusion, our novel approach generated an anticancer immune response that results in a lack of or low tumor incidence post-rechallenge and robust AEs, i.e., absence of or decreased spontaneous lung metastasis in tumor-bearing mice. This approach is readily translatable to clinical settings and may increase IR-induced AEs in cancer patients.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Cobre , Dissulfiram , Morte Celular Imunogênica , Dissulfiram/farmacologia , Animais , Vacinas Anticâncer/farmacologia , Vacinas Anticâncer/imunologia , Feminino , Camundongos , Morte Celular Imunogênica/efeitos dos fármacos , Cobre/farmacologia , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C
5.
J Cancer ; 15(9): 2518-2537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577609

RESUMO

Background: The nuclear cap-binding complex (CBC)-dependent translation (CT) is an important initial translation pathway for 5'-cap-dependent translation in normal mammal cells. Eukaryotic translation initiation factor 4A-III (eIF4A3), as an RNA helicase, is recruited to CT complex and enhances CT efficiency through participating in unwinding of secondary structure in the 5' UTR. However, the detailed mechanism for eIF4A3 implicated in unwinding of secondary structure in the 5' UTR in normal mammal cells is still unclear. Specially, we need to investigate whether the kind of mechanism in normal mammal cells extrapolates to cancer cells, e.g. ESCC, and further interrogate whether and how the mechanism triggers malignant phenotype of ESCC, which are important for identifying a potential therapeutic target for patients with ESCC. Methods: Bioinformatics analysis, RNA immunoprecipitation and RNA pulldown assays were performed to detect the interaction of circular RNA circ-231 with eIF4A3. In vitro and in vivo assays were performed to detect biological roles of circ-231 in ESCC. RNA immunoprecipitation, RNA pulldown, mass spectrometry analysis and co-immunoprecipitation assays were used to measure the interaction of circ-231, eIF4A3 and STAU1 in HEK293T and ESCC. In vitro EGFP reporter and 5' UTR of mRNA pulldown assays were performed to probe for the binding of circ-231, eIF4A3 and STAU1 to secondary structure of 5' UTR. Results: RNA immunoprecipitation assays showed that circ-231 interacted with eIF4A3 in HEK293T and ESCC. Further study confirmed that circ-231 orchestrated with eIF4A3 to control protein expression of TPI1 and PRDX6, but not for mRNA transcripts. The in-depth mechanism study uncovered that both circ-231 and eIF4A3 were involved in unwinding of secondary structure in 5' UTR of TPI1 and PRDX6. More importantly, circ-231 promoted the interaction between eIF4A3 and STAU1. Intriguingly, both circ-231 and eIF4A3 were dependent on STAU1 binding to secondary structure in 5' UTR. Biological function assays revealed that circ-231 promoted the migration and proliferation of ESCC via TPI1 and PRDX6. In ESCC, the up-regulated expression of circ-231 was observed and patients with ESCC characterized by higher expression of circ-231 have concurrent lymph node metastasis, compared with control. Conclusions: Our data unravels the detailed mechanism by which STAU1 binds to secondary structure in 5' UTR of mRNAs and recruits eIF4A3 through interacting with circ-231 and thereby eIF4A3 is implicated in unwinding of secondary structure, which is common to HEK293T and ESCC. However, importantly, our data reveals that circ-231 promotes migration and proliferation of ESCC and the up-regulated circ-231 greatly correlates with tumor lymph node metastasis, insinuating that circ-231 could be a therapeutic target and an indicator of risk of lymph node metastasis for patients with ESCC.

6.
J Am Chem Soc ; 146(11): 7584-7593, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469801

RESUMO

Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.


Assuntos
DNA Forma Z , Quimera de Direcionamento de Proteólise , Proteólise , Adenosina Desaminase/metabolismo , RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo
7.
FEBS J ; 291(9): 1909-1924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38380720

RESUMO

Breast cancer is often treated with chemotherapy. However, the development of chemoresistance results in treatment failure. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to contribute to chemoresistance in breast cancer cells. In studying the transcriptional regulation of NEAT1 using multi-omics approaches, we showed that NEAT1 is up-regulated by 5-fluorouracil in breast cancer cells with wild-type cellular tumor antigen p53 but not in mutant-p53-expressing breast cancer cells. The regulation of NEAT1 involves mediator complex subunit 12 (MED12)-mediated repression of histone acetylation marks at the promoter region of NEAT1. Knockdown of MED12 but not coactivator-associated arginine methyltransferase 1 (CARM1) induced histone acetylation at the NEAT1 promoter, leading to elevated NEAT1 mRNAs, resulting in a chemoresistant phenotype. The MED12-dependent regulation of NEAT1 differs between wild-type and mutant p53-expressing cells. MED12 depletion led to increased expression of NEAT1 in a wild-type p53 cell line, but decreased expression in a mutant p53 cell line. Chemoresistance caused by MED12 depletion can be partially rescued by NEAT1 knockdown in p53 wild-type cells. Collectively, our study reveals a novel mechanism of chemoresistance dependent on MED12 transcriptional regulation of NEAT1 in p53 wild-type breast cancer cells.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Complexo Mediador , RNA Longo não Codificante , Proteína Supressora de Tumor p53 , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Complexo Mediador/genética , Complexo Mediador/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fluoruracila/farmacologia , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Acetilação/efeitos dos fármacos , Histonas/metabolismo , Histonas/genética
8.
Mol Cell ; 84(4): 776-790.e5, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211588

RESUMO

TANK-binding kinase 1 (TBK1) is a potential therapeutic target in multiple cancers, including clear cell renal cell carcinoma (ccRCC). However, targeting TBK1 in clinical practice is challenging. One approach to overcome this challenge would be to identify an upstream TBK1 regulator that could be targeted therapeutically in cancer specifically. In this study, we perform a kinome-wide small interfering RNA (siRNA) screen and identify doublecortin-like kinase 2 (DCLK2) as a TBK1 regulator in ccRCC. DCLK2 binds to and directly phosphorylates TBK1 on Ser172. Depletion of DCLK2 inhibits anchorage-independent colony growth and kidney tumorigenesis in orthotopic xenograft models. Conversely, overexpression of DCLK2203, a short isoform that predominates in ccRCC, promotes ccRCC cell growth and tumorigenesis in vivo. Mechanistically, DCLK2203 elicits its oncogenic signaling via TBK1 phosphorylation and activation. Taken together, these results suggest that DCLK2 is a TBK1 activator and potential therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Quinases Semelhantes a Duplacortina , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
9.
Iran J Pharm Res ; 22(1): e132496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116559

RESUMO

Background: Bone marrow-derived mesenchymal stem cell (BMSC) transplantation has become an effective method for treating neurodegenerative diseases. Objectives: This study investigated the effect of 3-N-butylphthalide (NBP) on the neuronal differentiation of BMSCs and its potential mechanism. Methods: In this study, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect cell proliferation and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining was conducted to detect the apoptosis of BMSCs. Quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to detect the messenger RNA (mRNA) and protein expression levels, respectively. An enzyme-linked immunosorbent serologic assay assessed the levels of interleukin-1ß, tumor necrosis factor-α, and cyclic adenosine monophosphate (cAMP). Moreover, a flow cytometry assay was used to detect the proportion of active ß-tubulin III (TUJ-1) cells, and TUJ-1 expression was observed by immunofluorescence assay. Results: The results showed that a low concentration of NBP promoted the proliferation and induction of BMSC neuronal differentiation while inhibiting apoptosis, the production of inflammatory factors, and p65 expression. Compared with differentiation induction alone, combined NBP treatment increased the levels of nestin, neuron-specific enolase (NSE), TUJ-1, and microtubule-associated protein 2 (MAP2) protein, as well as the ratio of TUJ-1-positive cells and cAMP expression. Furthermore, p65 overexpression weakened the effect of NBP, and the overexpression of hairy and enhancer of split homolog-1 (HES1) reversed the effect of NBP in the induction of BMSC neuronal differentiation in vitro. Conclusions: We confirmed that NBP exhibited potential therapeutic properties in the stem cell transplantation treatment of neurodegenerative diseases by protecting cells and promoting BMSC neuronal differentiation by inhibiting the p65/HES 1 pathway.

10.
J Med Chem ; 66(23): 16168-16186, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38019706

RESUMO

As a core chromatin-regulatory scaffolding protein, WDR5 mediates numerous protein-protein interactions (PPIs) with other partner oncoproteins. However, small-molecule inhibitors that block these PPIs exert limited cell-killing effects. Here, we report structure-activity relationship studies in pancreatic ductal adenocarcinoma (PDAC) cells that led to the discovery of several WDR5 proteolysis-targeting chimer (PROTAC) degraders, including 11 (MS132), a highly potent and selective von Hippel-Lindau (VHL)-recruiting WDR5 degrader, which displayed positive binding cooperativity between WDR5 and VHL, effectively inhibited proliferation in PDAC cells, and was bioavailable in mice and 25, a cereblon (CRBN)-recruiting WDR5 degrader, which selectively degraded WDR5 over the CRBN neo-substrate IKZF1. Furthermore, by conducting site-directed mutagenesis studies, we determined that WDR5 K296, but not K32, was involved in the PROTAC-induced WDR5 degradation. Collectively, these studies resulted in a highly effective WDR5 degrader, which could be a potential therapeutic for pancreatic cancer and several potentially useful tool compounds.


Assuntos
Neoplasias Pancreáticas , Quimera de Direcionamento de Proteólise , Animais , Camundongos , Proteólise , Relação Estrutura-Atividade , Neoplasias Pancreáticas/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo
11.
Int Immunopharmacol ; 125(Pt A): 111110, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883813

RESUMO

Autoimmune hepatitis (AIH) is an inflammatory liver disease in which the autoimmune system instigates an attack on the liver, causing inflammation and liver injury, and its incidence has increased worldwide in recent years. The mouse model of acute hepatitis established by concanavalin A (Con A) is a typical and recognized mouse model for the study of T-cell-dependent liver injury. In this study, we aimed to investigate whether the artemisinin derivative TPN10475 could alleviate AIH and its possible mechanisms. TPN10475 effectively inhibited lymphocyte proliferation and IFN-γ+ T cells production in vitro, alleviated liver injury by decreasing infiltrating inflammatory T cells producing IFN-γ in the liver and peripheral immune tissues, and demonstrated that TPN10475 weakened the activation and function of T cells by inhibiting PI3K-AKT signaling pathway. These results suggested that TPN10475 may be a potential drug for the treatment of AIH, and the inhibition of PI3K-AKT signaling pathway may provide new ideas for the study of the pathogenesis of AIH.


Assuntos
Hepatite Autoimune , Animais , Camundongos , Concanavalina A/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado/patologia , Linfócitos T
12.
Transl Cancer Res ; 12(8): 2197-2211, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37701115

RESUMO

Background: Accumulating evidence has shown that dacomitinib has potential activities for patients with non-small cell lung cancer (NSCLC) harboring uncommon epidermal growth factor receptor (EGFR) mutations, human epidermal growth factor receptor 2 (HER2) mutations, or central nervous system (CNS) metastases. Methods: This study aimed to give a systematic review on its potential applications in the above settings by searching MEDLINE/PubMed, Embase, Cochrane Library, American Society of Clinical Oncology.org, European Society for Medical Oncology.org, and ClinicalTrials.gov. Results: The literature search yielded 649 publications in total. According to our findings, dacomitinib exhibited promising efficacy in patients with major uncommon EGFR mutations (including G719X, S768I, and L861Q). Both EGFR exon 20 insertional mutation (Ex20ins) and HER2 Ex20ins demonstrated significant internal heterogeneity in response to dacomitinib, among which specific subtypes (including EGFR D770delinsGY, A763_Y764insFQEA, and HER2 M774delinsWLV) were highly sensitive. Other uncommon EGFR mutations including 18del and L747P have also been shown responsive to dacomitinib. Interestingly, limited studies suggested dacomitinib application on certain first or third generation tyrosine kinase inhibitors (TKIs)' resistant secondary mutations. Last but not least, both pre-clinical and clinical data indicated that dacomitinib has an encouraging intracranial tumor control ability, regardless of uncommon mutations. Conclusions: Dacomitinib demonstrated good disease control on patients with NSCLC harboring major uncommon EGFR mutations and specific EGFR or HER2 mutation subtypes, and selective clinical application of dacomitinib is considerable in this setting, especially for those with intracranial metastases.

13.
Asian J Androl ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738151

RESUMO

ABSTRACT: Urethral stricture is characterized by the chronic formation of fibrous tissue, leading to the narrowing of the urethral lumen. Despite the availability of various endoscopic treatments, the recurrence of urethral strictures remains a common challenge. Postsurgery pharmacotherapy targeting tissue fibrosis is a promising option for reducing recurrence rates. Although drugs cannot replace surgery, they can be used as adjuvant therapies to improve outcomes. In this regard, many drugs have been proposed based on the mechanisms underlying the pathophysiology of urethral stricture. Ongoing studies have obtained substantial progress in treating urethral strictures, highlighting the potential for improved drug effectiveness through appropriate clinical delivery methods. Therefore, this review summarizes the latest researches on the mechanisms related to the pathophysiology of urethral stricture and the drugs to provide a theoretical basis and new insights for the effective use and future advancements in drug therapy for urethral stricture.

14.
J Am Chem Soc ; 145(40): 21871-21878, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774414

RESUMO

Methyl-CpG-binding protein 2 (MeCP2), a reader of DNA methylation, has been extensively investigated for its function in neurological and neurodevelopmental disorders. Emerging evidence indicates that MeCP2 exerts an oncogenic function in cancer; however, the endeavor to develop a MeCP2-targeted therapy remains a challenge. This work attempts to address it by introducing a methylated nucleotide-based targeting chimera termed methyl-proteolysis-targeting chimera (methyl-PROTAC). The methyl-PROTAC incorporates a methylated cytosine into an oligodeoxynucleotide moiety to recruit MeCP2 for targeted degradation in a von Hippel-Lindau- and proteasome-dependent manner, thus displaying antiproliferative effects in cancer cells reliant on MeCP2 overexpression. This selective cytotoxicity endows methyl-PROTAC with the capacity to selectively eliminate cancer cells that are addicted to the overexpression of the MeCP2 oncoprotein. Furthermore, methyl-PROTAC-mediated MeCP2 degradation induces apoptosis in cancer cells. These findings underscore the therapeutic potential of methyl-PROTAC to degrade undruggable epigenetic regulatory proteins. In summary, the development of methyl-PROTAC introduces an innovative strategy by designing a modified nucleotide-based degradation approach for manipulating epigenetic factors, thereby representing a promising avenue for the advancement of PROTAC-based therapeutics.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Nucleotídeos , Proteína 2 de Ligação a Metil-CpG/genética , Nucleotídeos/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Metilação de DNA
15.
Cell Death Dis ; 14(9): 608, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709757

RESUMO

Chemokines secreted by dendritic cells (DCs) play a key role in the regulation of inflammation and autoimmunity through chemokine receptors. However, the role of chemokine receptor CXCR1 in inflammation-inducing experimental autoimmune encephalomyelitis (EAE) and acute respiratory distress syndrome (ARDS) remains largely enigmatic. Here we reported that compared with healthy controls, the level of CXCR1 was aberrantly increased in multiple sclerosis (MS) patients. Knockout of CXCR1 not only ameliorated disease severity in EAE mice but also suppressed the secretion of inflammatory factors (IL-6/IL-12p70) production. We observed the same results in EAE mice with DCs-specific deletion of CXCR1 and antibody neutralization of the ligand CXCL5. Mechanically, we demonstrated a positive feedback loop composed of CXCL5/CXCR1/HIF-1α direct regulating of IL-6/IL-12p70 production in DCs. Meanwhile, we found CXCR1 deficiency in DCs limited IL-6/IL-12p70 production and lung injury in LPS-induced ARDS, a disease model caused by inflammation. Overall, our study reveals CXCR1 governs DCs-mediated inflammation and autoimmune disorders and its potential as a therapeutic target for related diseases.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Camundongos , Camundongos Knockout , Encefalomielite Autoimune Experimental/genética , Interleucina-6 , Inflamação , Interleucina-12 , Receptores de Quimiocinas , Receptores de Interleucina-8A/genética , Células Dendríticas
16.
Res Sq ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645899

RESUMO

Irradiation (IR) induces immunogenic cell death (ICD) in tumors, but it rarely leads to the abscopal effect (AE). However, combining IR with immune checkpoint inhibitors has shown anecdotal success in inducing AEs. In this study, we aimed to enhance the IR-induced immune response and generate reproducible AEs using the anti-alcoholism drug disulfiram (DSF) and copper complex (DSF/Cu) via induction of tumor ICD. We measured ICD in vitro and in vivo. In mouse tumor models, DSF/Cu was injected intratumorally followed by localized tumor IR, creating an in situ cancer vaccine. We determined the anti-cancer response by primary tumor rejection and assessed systemic immune responses by tumor rechallenge and the occurrence of AEs, i.e., spontaneous lung metastasis. Additionally, we analyzed immune cell subsets and quantified proinflammatory and immunosuppressive chemokines/cytokines in the tumor microenvironment (TME) and blood of the vaccinated mice. Immune cell depletion was investigated for its effects on the vaccine-induced anti-cancer response. The results showed that DSF/Cu and IR induced more potent ICD under hypoxia than normoxia in vitro. Low-dose intratumoral injection of DSF/Cu and IR demonstrated strong anti-primary and -rechallenged tumor effects and robust AEs in mouse models. These vaccinations also increased CD8 + and CD4 + cell numbers while decreasing Tregs and myeloid-derived suppressor cells in the 4T1 model, and increased CD8+, DC, and decreased Treg cell numbers in the MCa-M3C model. Depleting both CD8 + and CD4 + cells abolished the vaccine's anticancer response. Moreover, vaccinated tumor-bearing mice exhibited increased TNFα levels and reduced levels of immunosuppressive chemokines/cytokines. In conclusion, our novel approach generated an anti-cancer immune response, resulting in a lack of or low tumor incidence post-rechallenge and robust AEs, i.e., the absence of or decreased spontaneous lung metastasis in tumor-bearing mice. This approach is readily translatable to clinical settings and may increase IR-induced AEs in cancer patients.

17.
Nurs Open ; 10(10): 6912-6922, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37458186

RESUMO

AIMS: The aim of this study was to refine the Falling Risk Assessment Tool in Ophthalmology Inpatients (FRAT) and assess its psychometric properties. DESIGN: A cross-sectional design was used. METHODS: A convenience sample of 730 patients in the ophthalmology department was recruited in a level A tertiary hospital in Guangdong Province from July 2021 to January 2022. Data were analysed using item analysis, interrater reliability, content validation, internal consistency reliability and exploratory factor analysis. RESULTS: Five factors were extracted, accounting for 63.039% of the variance. The interrater reliability of the tool was 0.97. Cronbach's α was 0.658. The I-CVI was 0.75-1.00, the S-CVI/UA was 0.95 and the adjusted mean values of Kappa for indicators ranged from 0.72 to 1.00, as evaluated by the expert group. The FRAT showed satisfactory reliability and validity, and can be used to measure the fall risk assessment in ophthalmology inpatients. PATIENT OR PUBLIC CONTRIBUTION: After explaining the purpose, the patients received our fall risk assessment and answered the corresponding questionnaire questions.


Assuntos
Pacientes Internados , Oftalmologia , Humanos , Psicometria , Reprodutibilidade dos Testes , Estudos Transversais , Medição de Risco
18.
Int Immunopharmacol ; 121: 110458, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302366

RESUMO

Apoptosis is a natural physiological process that can maintain the homeostasis of the body and immune system. This process plays an important role in the system's resistance to autoimmune development. Because of the dysfunction of cell apoptosis mechanism, the number of autoreactive cells in the peripheral tissue increases along with their accumulation. This will lead to the development of autoimmune diseases, such as multiple sclerosis (MS). MS is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of the complexity of its pathogenesis, there is no drug to cure it completely. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Carboplatin (CA) is a second-generation platinum anti-tumor drug. In this study, we attempted to assess whether CA could be used to ameliorate EAE. CA reduced spinal cord inflammation, demyelination, and disease scores in mice with EAE. Moreover, the number and proportion of pathogenic T cells especially Th1 and Th17 in the spleen and draining lymph nodes were reduced in CA-treated EAE mice. Proteomic differential enrichment analysis showed that the proteins related to apoptosis signal changed significantly after CA treatment. CFSE experiment showed that CA significantly inhibited the T cell proliferation. Finally, CA also induced apoptosis in activated T cells and MOG-specific T cells in vitro. Overall, our findings indicated that CA plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Carboplatina/efeitos adversos , Carboplatina/metabolismo , Proteômica , Esclerose Múltipla/patologia , Apoptose , Camundongos Endogâmicos C57BL , Células Th17 , Células Th1
19.
PLoS One ; 18(5): e0286105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252911

RESUMO

Oxidative defense or arsenic(As) changes exhibited by Trametes versicolor in response to toxicity under As stress remain unclear. In this study, after internal transcribed spacer identification, a wild T. versicolor HN01 strain was cultivated under 40 and 80 mg/L of As III stress. The antioxidant contents by multifunctional microplate reader and the speciations of As by high performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry were examined to explore the detoxification mechanisms. The results demonstrated this strain could tolerate As concentration of 80 mg/L with a bio-enrichment coefficients of 11.25. Among the four antioxidants, the activities of catalase, superoxide dismutase, and glutathione in the As-stress group at 80 mg/L improved by 1.10, 1.09, and 20.47 times that of non-stress group, respectively. The speciation results indicated that AsV was the dominant species in the hyphae of T. versicolor regardless of no-stress or As-stress. The detoxification mechanisms of this strain were involved alleviating the toxicity by increasing the activities of antioxidants, especially glutathione, as well as by converting As III into As V and other less toxic As species. T. versicolor could be used as a bio-accumulator to deal with As exposure in contaminated environments based on its extraordinary As tolerance and accumulation capacities.


Assuntos
Arsênio , Arsênio/toxicidade , Arsênio/análise , Trametes/genética , Trametes/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Glutationa/metabolismo
20.
J Am Chem Soc ; 145(19): 10872-10879, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141574

RESUMO

Telomeres are naturally shortened after each round of cell division in noncancerous normal cells, while the activation of telomerase activity to extend telomere in the cancer cell is essential for cell transformation. Therefore, telomeres are regarded as a potential anticancer target. In this study, we report the development of a nucleotide-based proteolysis-targeting chimera (PROTAC) designed to degrade TRF1/2 (telomeric repeat-binding factor 1/2), which are the key components of the shelterin complex (telosome) that regulates the telomere length by directly interacting with telomere DNA repeats. The prototype telomere-targeting chimeras (TeloTACs) efficiently degrade TRF1/2 in a VHL- and proteosome-dependent manner, resulting in the shortening of telomeres and suppressed cancer cell proliferation. Compared to the traditional receptor-based off-target therapy, TeloTACs have potential application in a broad spectrum of cancer cell lines due to their ability to selectively kill cancer cells that overexpress TRF1/2. In summary, TeloTACs provide a nucleotide-based degradation approach for shortening the telomere and inhibiting tumor cell growth, representing a promising avenue for cancer treatment.


Assuntos
Telômero , Proteína 1 de Ligação a Repetições Teloméricas , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Telômero/metabolismo , Proteínas/genética , Linhagem Celular , Complexo de Endopeptidases do Proteassoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA