Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 42876, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216662

RESUMO

DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5) is an ATP-dependent RNA helicase that is overexpressed in various malignancies. Increasing evidence suggests that DDX5 participates in carcinogenesis and cancer progression via promoting cell proliferation and metastasis. However, the functional role of DDX5 in gastric cancer is largely unknown. In this study, we observed that DDX5 was significantly up-regulated in gastric cancer tissues compared with the paired adjacent normal tissues. The expression of DDX5 correlated strongly with Ki67 index and pathological stage of gastric cancer. In vitro and in vivo studies suggested that knockdown of DDX5 inhibited gastric cancer cell proliferation, colony formation and xenografts growth, whereas ectopic expression of DDX5 promoted these cellular functions. Mechanically, DDX5 induced gastric cancer cell growth by activating mTOR/S6K1. Treatment of everolimus, the specific mTOR inhibitor, significantly attenuated DDX5-mediated cell proliferation. Interestingly, the expression of DDX5 and p-mTOR in gastric cancer tissues demonstrated a positive correlation. Taken together, these results revealed a novel role of DDX5 in gastric cancer cell proliferation via the mTOR pathway. Therefore, DDX5 may serve as a therapeutic target in gastric cancer.


Assuntos
RNA Helicases DEAD-box/genética , Transdução de Sinais , Neoplasias Gástricas/patologia , Regulação para Cima , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , RNA Helicases DEAD-box/metabolismo , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Estadiamento de Neoplasias , Transplante de Neoplasias , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Clin Exp Pharmacol Physiol ; 42(5): 510-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740656

RESUMO

Microgravity-induced vascular remodelling may play an important role in post-spaceflight orthostatic intolerance. In this study, we aimed to investigate the effects of simulated microgravity on monocyte adhesion to aortic endothelium in hindlimb unweighted rats and to elucidate the underlying mechanisms associated with this event. Sprague-Dawley rats were subjected to 4-week hindlimb unweighting to simulate microgravity. The recruitment of monocytes to the abdominal aorta was investigated by en face immunofluorescence staining and monocyte binding assays. The expression of the adhesion molecules E-selectin and vascular cell adhesion molecule-1 as well as the cytokine monocyte chemoattractant protein (MCP)-1 was evaluated by immunohistochemical staining, western blot, and quantitative reverse transcription polymerase chain reaction analyses. Additionally, nuclear factor-κB (NF-κB) activation and the messenger RNA expression levels of E-selectin, vascular cell adhesion molecule-1, and MCP-1 were assessed with the administration of an NF-κB inhibitor, pyrrolidine dithiocarbamate. Results showed that simulated microgravity significantly increased monocyte recruitment to the aortic endothelium, protein expression of E-selectin and MCP-1, and NF-κB activation in the abdominal aorta of rats. Pyrrolidine dithiocarbamate treatment not only significantly inhibited NF-κB activity but also reduced the messenger RNA levels of E-selectin, vascular cell adhesion molecule-1, and MCP-1 as well as monocyte recruitment in the abdominal aorta of hindlimb unweighted rats. These results suggest that simulated microgravity increases monocyte adhesion to rat aortic endothelium via the NF-κB-mediated expression of the adhesion molecule E-selectin and the cytokine MCP-1. Therefore, an NF-κB-mediated inflammatory response may be one of the cellular mechanisms responsible for arterial remodelling during exposure to microgravity.


Assuntos
Aorta Abdominal/citologia , Endotélio Vascular/citologia , Monócitos/citologia , NF-kappa B/metabolismo , Simulação de Ausência de Peso , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quimiocina CCL2/genética , Selectina E/genética , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Monócitos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Pirrolidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tiocarbamatos/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética
3.
PLoS One ; 7(5): e37451, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655048

RESUMO

BACKGROUND: Zoledronic acid, one of the most potent nitrogen-containing biphosphonates, has been demonstrated to have direct anti-tumor and anti-metastatic properties in breast cancer in vitro and in vivo. In particular, tumor-cell apoptosis has been recognized to play an important role in the treatment of metastatic breast cancer with zoledronic acid. However, the precise mechanisms remain less clear. In the present study, we investigated the specific role of large conductance Ca(2+)-activated potassium (BK(Ca)) channel in zoledronic acid-induced apoptosis of estrogen receptor (ER)-negative MDA-MB-231 breast cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: The action of zoledronic acid on BK(Ca) channel was investigated by whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry, analysis of fragmented DNA by agarose gel electrophoresis, and flow cytometry assays. Cell proliferation was investigated by MTT test and immunocytochemistry. In addition, such findings were further confirmed with human embryonic kidney 293 (HEK293) cells which were transfected with functional BK(Ca) α-subunit (hSloα). Our results clearly indicated that zoledronic acid directly increased the activities of BK(Ca) channels, and then activation of BK(Ca) channel by zoledronic acid contributed to induce apoptosis in MDA-MB-231 cells. The possible mechanisms were associated with the elevated level of intracellular Ca(2+) and a concomitant depolarization of mitochondrial membrane potential (Δψm) in MDA-MB-231 cells. CONCLUSIONS: Activation of BK(Ca) channel was here shown to be a novel molecular pathway involved in zoledronic acid-induced apoptosis of MDA-MB-231 cells in vitro.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Neoplasias da Mama/tratamento farmacológico , Difosfonatos/farmacologia , Imidazóis/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/agonistas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácido Zoledrônico
4.
J Cell Physiol ; 226(6): 1660-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21413024

RESUMO

It has been reported that diabetic vascular dysfunction is associated with impaired function of large conductance Ca(2+) -activated K(+) (BK(Ca) ) channels. However, it is unclear whether impaired BK(Ca) channel directly participates in regulating diabetic vascular remodeling by altering cell growth in response to hyperglycemia. In the present study, we investigated the specific role of BK(Ca) channel in controlling apoptosis and proliferation under high glucose concentration (25 mM). The cDNA encoding the α+ß1 subunit of BK(Ca) channel, hSloα+ß1, was transiently transfected into human embryonic kidney 293 (HEK293) cells. Cloned BK(Ca) currents were recorded by both whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry and analysis of fragmented DNA by agarose gel electrophoresis. Cell proliferation was investigated by flow cytometry assays, MTT test, and immunocytochemistry. In addition, the expression of anti-apoptotic protein Bcl-2, intracellular Ca(2+) , and mitochondrial membrane potential (Δψm) were also examined to investigate the possible mechanisms. Our results indicate that inhibition of cloned BK(Ca) channels might be responsible for hyperglycemia-altered apoptosis and proliferation in HEK-hSloα+ß1 cells. However, activation of BK(Ca) channel by NS1619 or Tamoxifen significantly induced apoptosis and suppressed proliferation in HEK-hSloα+ß1 cells under hyperglycemia condition. When rat cerebral smooth muscle cells were cultured in hyperglycemia, similar findings were observed. Moreover, the possible mechanisms underlying the activation of BK(Ca) channel were associated with decreased expression of Bcl-2, elevation of intracellular Ca(2+) , and a concomitant depolarization of Δψm in HEK-hSloα+ß1 cells. In conclusion, cloned BK(Ca) channel directly regulated apoptosis and proliferation of HEK293 cell under hyperglycemia condition.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Animais , Benzimidazóis/farmacologia , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Regulação para Baixo/efeitos dos fármacos , Vetores Genéticos/genética , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Tamoxifeno/farmacologia , Transfecção
5.
Apoptosis ; 15(4): 426-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20012488

RESUMO

The large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are highly expressed in vascular smooth muscle cells (VSMCs) and play an essential role in the regulation of various physiological functions. Besides its electrophysiological function in vascular relaxation, BK(Ca) has also been reported to be implicated in nitric oxide (NO)-induced apoptosis of VSMCs. However, the molecular mechanism is not clear and has not been determined on cloned channels. The present study was designed to clarify whether activation of cloned BK(Ca) channel was involved in NO-induced apoptosis in human embryonic kidney 293 (HEK293) cell. The cDNA encoding the alpha-subunit of BK(Ca) channel, hSloalpha, was transiently transfected into HEK293 cells. The apoptotic death in HEK-hSloalpha cells was detected using immunocytochemistry, analysis of fragmented DNA by agarose gel electrophoresis, MTT test, and flow cytometry assays. Whole-cell and single-channel characteristics of HEK-hSloalpha cells exhibited functional features similar to native BK(Ca) channel in VSMCs. Exposuring of HEK- hSloalpha cells to S-nitroso-N-acetyl-penicillamine increased the hSloalpha channel activities of whole-cell and single-channel, and then increased percentage of cells undergoing apoptosis. However, blocking hSloalpha channels with 1 mM tetraethylammonia or 100 nM iberiotoxin significantly decreased the NO-induced apoptosis, whereas 30 microM NS1619, the specific agonist of BK(Ca), independently increased hSloalpha currents and induced apoptosis. These results indicated that activation of cloned BK(Ca) channel was involved in NO-induced apoptosis of HEK293 cells.


Assuntos
Apoptose/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Óxido Nítrico/farmacologia , Linhagem Celular , Clonagem Molecular , Humanos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Tetraetilamônio/farmacologia , Transfecção
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 25(7): 584-7, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19737473

RESUMO

AIM: To investigate the mediating and regulating role of BK(Ca) channels in Ang II-induced cell proliferation. METHODS: Using Lipofectamine 2000, the pIRES-hSloalpha plasmid was transfected into HEK293 cells. The concentration-dependent cuve of Ang II-induced cell proliferation was tested by MTT colorimetry. The effect of IbTX, Ang II, Ang II + IbTX on the proliferating cell nuclear antigen (PCNA) expression and cell cycle of transfected HEK293-hSloalpha cells were detected by immunocytochemistry and flow cytometry, respectively. RESULTS: Ang II induced proliferation of transfected HEK293-hSloalpha cells in a concentration-dependent manner. PCNA expression of transfected HEK293-hSloalpha cells was enhanced by Ang II, and the percentage of S phase HEK293-hSloalpha cells was increased after Ang II treatment. However this effect was inhibited by IbTX, a selective BK(Ca) channel blocker. CONCLUSION: BK(Ca) channels play an potential role in mediating Ang II-induced proliferation of HEK293-hSloalpha cells.


Assuntos
Angiotensina II/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Peptídeos/farmacologia , Antígeno Nuclear de Célula em Proliferação/análise , Transfecção
7.
Mol Cell Biochem ; 331(1-2): 117-26, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19430934

RESUMO

Large-conductance Ca(2+)-activated K(+) channel is formed by a tetramer of the pore-forming alpha-subunit and distinct accessory beta-subunits (beta1-beta4) which contribute to BK(Ca) channel molecular diversity. Accumulative evidences indicate that not only alpha-subunit alone but also the alpha + beta subunit complex and/or beta-subunit might play an important role in modulating various physiological functions in most mammalian cells. To evaluate the detailed pharmacological and biophysical properties of alpha + beta1 subunit complex or beta1-subunit in BK(Ca) channel, we established an expression system that reliably coexpress hSloalpha + beta1 subunit complex in HEK293 cells. The coexpression of hSloalpha + beta1 subunit complex was evaluated by western blotting and immunolocalization, and then the single-channel kinetics and pharmacological properties of expressed hSloalpha + beta1 subunit complex were investigated by cell-attached and outside-out patches, respectively. The results in this study showed that the expressed hSloalpha + beta1 subunit complex demonstrated to be fully functional for its typical single-channel traces, Ca(2+)-sensitivity, voltage-dependency, high conductance (151 +/- 7 pS), and its pharmacological activation and inhibition.


Assuntos
Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Benzimidazóis/farmacologia , Western Blotting , Cálcio/farmacologia , Linhagem Celular , Forma Celular/efeitos dos fármacos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Plasmídeos/genética , Transfecção
8.
Cancer Biol Ther ; 7(1): 45-50, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17938585

RESUMO

OBJECTIVES: Our previous studies showed that delayed rectifier potassium currents existed in human gastric cancer cells and the currents were related to the growth of gastric cancer cells. Human ether-a-go-go-related gene (herg) encoding alpha subunit of delayed rectifier potassium channel has been indicated with involvement in tumor cell growth and death. The purpose of the present study is to investigate the expression of HERG protein in gastric cancer tissue and cells; analyze the relationship between the expression of HERG protein and the clinicopathological characteristics of patients with gastric cancer; explore the effects of HERG protein on biological behaviours of gastric cancer cells. METHODS: The expression of HERG protein in gastric cancer tissues and cells was measured by immunohistochemistry and Western blot, respectively. Reduction of HERG protein was carried out by siRNA technology. The proliferation, ability of clone formation, cell cycle, apoptosis and invasive ability of gastric cancer cells were evaluated by MTT assay, clone formation assay, flow cytometry and cell invasion assay. Tumor growth in nude mice was to be used to access the tumorigenicity of gastric cancer cells and HERG currents were recorded by patch-clamp. RESULTS: HERG protein was exclusively expressed in gastric cancer cells. The expression of HERG protein was associated with tumor differentiation, TNM stage and lymph node involvement of gastric cancer. Silencing HERG protein could eliminate the HERG currents and inhibit proliferation, clone formation, invasiveness and tumorigenicity of gastric cancer cells. Reducing HERG protein could also inhibit gastric cancer cells entering S phase from G(1) phase and induce apoptosis of gastric cancer cells. CONCLUSION: HERG protein is involved in carcinogenesis of gastric cancer and is a potential therapeutic target of gastric cancer.


Assuntos
Canais de Potássio Éter-A-Go-Go/fisiologia , Neoplasias Gástricas/química , Adulto , Idoso , Animais , Apoptose , Linhagem Celular Tumoral , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/análise , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA