RESUMO
Hematopoietic stem cells (HSCs) have been considered to progressively lose their self-renewal and differentiation potentials prior to the commitment to each blood lineage. However, recent studies have suggested that megakaryocyte progenitors (MkPs) are generated at the level of HSCs. In this study, we newly identified early megakaryocyte lineage-committed progenitors (MgPs) mainly in CD201-CD48- cells and CD48+ cells separated from the CD150+CD34-Kit+Sca-1+Lin- HSC population of the bone marrow in adult mice. Single-cell colony assay and single-cell transplantation showed that MgPs, unlike platelet-biased HSCs, had little repopulating potential in vivo, but formed larger megakaryocyte colonies in vitro (on average 8 megakaryocytes per colony) than did previously reported MkPs. Single-cell RNA sequencing supported that HSCs give rise to MkPs through MgPs along a Mk differentiation pathway. Single-cell reverse transcription polymerase chain reaction (RT-PCR) analysis showed that MgPs expressed Mk-related genes, but were transcriptionally heterogenous. Clonal culture of HSCs suggested that MgPs are not direct progeny of HSCs. We propose a differentiation model in which HSCs give rise to MgPs which then give rise to MkPs, supporting a classic model in which Mk-lineage commitment takes place at a late stage of differentiation.
RESUMO
Bladder cancer (BC) is one of the most common tumors characterized by a high rate of relapse and a lack of targeted therapy. Here, YEATS domain-containing protein 4 (YEATS4) is an essential gene for BC cell viability using CRISPR-Cas9 library screening is reported, and that HUWE1 is an E3 ligase responsible for YEATS4 ubiquitination and proteasomal degradation by the Protein Stability Regulators Screening Assay. KAT8-mediated acetylation of YEATS4 impaired its interaction with HUWE1 and consequently prevented its ubiquitination and degradation. The protein levels of YEATS4 and KAT8 are positively correlated and high levels of these two proteins are associated with poor overall survival in BC patients. Importantly, suppression of YEATS4 acetylation with the KAT8 inhibitor MG149 decreased YEATS4 acetylation, reduced cell viability, and sensitized BC cells to cisplatin treatment. The findings reveal a critical role of the KAT8/YEATS4 axis in both tumor growth and cisplatin sensitivity in BC cells, potentially generating a novel therapeutic strategy for BC patients.
Assuntos
Cisplatino , Histona Acetiltransferases , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Humanos , Cisplatino/farmacologia , Linhagem Celular Tumoral , Camundongos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Acetilação/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genéticaRESUMO
Radioprotection was previously considered as a function of hematopoietic stem cells (HSCs). However, recent studies have reported its activity in hematopoietic progenitor cells (HPCs). To address this issue, we compared the radioprotection activity in 2 subsets of HSCs (nHSC1 and 2 populations) and 4 subsets of HPCs (nHPC1-4 populations) of the mouse bone marrow, in relation to their in vitro and in vivo colony-forming activity. Significant radioprotection activity was detected in the nHSC2 population enriched in lymphoid-biased HSCs. Moderate radioprotection activity was detected in nHPC1 and 2 populations enriched in myeloid-biased HPCs. Low radioprotection activity was detected in the nHSC1 enriched in myeloid-biased HSCs. No radioprotection activity was detected in the nHPC3 and 4 populations that included MPP4 (LMPP). Single-cell colony assay combined with flow cytometry analysis showed that the nHSC1, nHSC2, nHPC1, and nHPC2 populations had the neutrophils/macrophages/erythroblasts/megakaryocytes (nmEMk) differentiation potential whereas the nHPC3 and 4 populations had only the nm differentiation potential. Varying day 12 spleen colony-forming units (day 12 CFU-S) were detected in the nHSC1, nHSC2, and nHPC1-3 populations, but very few in the nHPC4 population. These data suggested that nmEMk differentiation potential and day 12 CFU-S activity are partially associated with radioprotection activity. Reconstitution analysis showed that sufficient myeloid reconstitution around 12 to 14âdays after transplantation was critical for radioprotection. This study implied that radioprotection is specific to neither HSC nor HPC populations, and that lymphoid-biased HSCs and myeloid-biased HPCs as populations play a major role in radioprotection.
RESUMO
Granulocyte colony-stimulating factor (G-CSF) is widely used in clinical settings to mobilize hematopoietic stem cells (HSCs) into the circulation for HSC harvesting and transplantation. However, whether G-CSF directly stimulates HSCs to change their cell cycle state and fate is controversial. HSCs are a heterogeneous population consisting of different types of HSCs, such as myeloid-biased HSCs and lymphoid-biased HSCs. We hypothesized that G-CSF has different effects on different types of HSCs. To verify this, we performed serum-free single-cell culture and competitive repopulation with cultured cells. Single highly purified HSCs and hematopoietic progenitor cells (HPCs) were cultured with stem cell factor (SCF), SCF + G-CSF, SCF + granulocyte/macrophage (GM)-CSF, or SCF + thrombopoietin (TPO) for 7 days. Compared with SCF alone, SCF + G-CSF increased the number of divisions of cells from the lymphoid-biased HSC-enriched population but not that of cells from the My-bi HSC-enriched population. SCF + G-CSF enhanced the level of reconstitution of lymphoid-biased HSCs but not that of myeloid-biased HSCs. Clonal transplantation assay also showed that SCF + G-CSF did not increase the frequency of myeloid-biased HSCs. These data showed that G-CSF directly acted on lymphoid-biased HSCs but not myeloid-biased HSCs. Our study also revised the cytokine network at early stages of hematopoiesis: SCF directly acted on myeloid-biased HSCs; TPO directly acted on myeloid-biased HSCs and lymphoid-biased HSCs; and GM-CSF acted only on HPCs. Early hematopoiesis is controlled differentially and sequentially by a number of cytokines.
Assuntos
Fator Estimulador de Colônias de Granulócitos , Células-Tronco Hematopoéticas , Animais , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hematopoese , Camundongos , Fator de Células-Tronco/farmacologia , Trombopoetina/farmacologiaRESUMO
Whether hematopoietic stem cells (HSCs) express lineage markers is controversial. In this study, we highly purified HSCs from the adult bone marrow of C57BL/6 mice and examined their gene expression and reconstitution potential. We first focused on the integrin family. Single-cell reverse transcription polymerase chain reaction revealed that the expression of ItgaM/Itgb2 (Mac-1) and Itga2b/Itgb3 (CD41/CD61) gradually increased along HSC differentiation, whereas Itga4, Itga5, Itga6, and ItgaV (CD51) together with Itgb1 were highly expressed in both HSCs and hematopoietic progenitor cells (HPCs). We next fractionated HSCs based on their expression of Mac-1, CD41, and CD51 by flow cytometry. We detected Mac-negative and Mac-low, but not Mac-high cells, in the HSC population. We also detected CD41-negative, -low, and -high cells in the HSC population. Competitive repopulation revealed that Mac-1-negative and -low HSCs were functionally similar, and CD41-negative and -low HSCs were functionally similar, at the single-cell level, but CD41-high HSCs were not detectable. We then found that the selection of Mac-1-negative HSCs or CD41-negative HSCs had no advantage in HSC purification. We moreover found that HSCs expressed more CD51 than CD41, and HPCs expressed more CD41 than CD51, suggesting that CD51 expression was gradually replaced by CD41 expression during megakaryocyte differentiation. We concluded that low levels of Mac-1 and CD41 expression are irrelevant to the self-renewal and differentiation potentials in HSCs.
Assuntos
Antígenos de Diferenciação/biossíntese , Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação/genética , Transplante de Medula Óssea , Autorrenovação Celular , Separação Celular , Células Clonais , Citometria de Fluxo , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Integrinas/biossíntese , Integrinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quimera por Radiação , TrombopoeseRESUMO
How hematopoietic stem cells (HSCs) maintain the balance of self-renewal and differentiation could be partially ascribed to asymmetric and symmetric division patterns. However, a simple and effective method to detect stem cell division patterns is lacking. In this study, we introduce a strategy to describe stem cells division patterns with high spatial resolution at the single-cell level. We show that the fate determinant, Numb, exhibits low expression levels in HSCs that increase upon the initiation of differentiation. Using this single-cell immunofluorescence technique, we found that HSCs mainly undergo symmetric self-renewal in the presence of only stem cell factor, but with the addition of trombopoietin this division pattern is transformed into a symmetric commitment dominant mode in vitro. In addition, our study indicated that the division pattern cannot be defined by cell size or the nuclear/cytoplasm ratio. These findings collectively demonstrate that this single-cell immunofluorescence technique provides a new biological strategy in stem cell division research, and can be more widely applied given its flexibility, easy operability, and inexpensiveness.
Assuntos
Divisão Celular , Células-Tronco Hematopoéticas/metabolismo , Análise de Célula Única , Animais , Imunofluorescência , Células-Tronco Hematopoéticas/citologia , CamundongosRESUMO
The cell of origin, defined as the normal cell in which the transformation event first occurs, is poorly identified in leukemia, despite its importance in understanding of leukemogenesis and improving leukemia therapy. Although hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were used for leukemia models, whether their self-renewal and differentiation potentials influence the initiation and development of leukemia is largely unknown. In this study, the self-renewal and differentiation potentials in 2 distinct types of HSCs (HSC1 [CD150+CD41-CD34-Lineage-Sca-1+c-Kit+ cells] and HSC2 [CD150-CD41-CD34-Lineage-Sca-1+c-Kit+ cells]) and 3 distinct types of HPCs (HPC1 [CD150+CD41+CD34-Lineage-Sca-1+c-Kit+ cells], HPC2 [CD150+CD41+CD34+Lineage-Sca-1+c-Kit+ cells], and HPC3 [CD150-CD41-CD34+Lineage-Sca-1+c-Kit+ cells]) were isolated from adult mouse bone marrow, and examined by competitive repopulation assay. Then, cells from each population were retrovirally transduced to initiate MLL-AF9 acute myelogenous leukemia (AML) and the intracellular domain of NOTCH-1 T-cell acute lymphoblastic leukemia (T-ALL). AML and T-ALL similarly developed from all HSC and HPC populations, suggesting multiple cellular origins of leukemia. New leukemic stem cells (LSCs) were also identified in these AML and T-ALL models. Notably, switching between immunophenotypical immature and mature LSCs was observed, suggesting that heterogeneous LSCs play a role in the expansion and maintenance of leukemia. Based on this mouse model study, we propose that acute leukemia arises from multiple cells of origin independent of the self-renewal and differentiation potentials in hematopoietic stem and progenitor cells and is amplified by LSC switchover.
Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/genética , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células-Tronco/citologiaRESUMO
Hematopoietic stem cells (HSCs) self-renew or differentiate through division. Cytokines are essential for inducing HSC division, but the optimal cytokine combination to control self-renewal of HSC in vitro remains unclear. In this study, we compared the effects of interleukin-12 (IL-12) and thrombopoietin (TPO) in combination with stem cell factor (SCF) on in vitro self-renewal of HSCs. Single-cell assays were used to overcome the heterogeneity issue of HSCs, and serum-free conditions were newly established to permit reproduction of data. In single-cell cultures, CD150+CD48-CD41-CD34-c-Kit+Sca-1+lineage- HSCs divided significantly more slowly in the presence of SCF+IL-12 compared with cells in the presence of SCF+TPO. Serial transplantation of cells from bulk and clonal cultures revealed that TPO was more effective than IL-12 at supporting in vitro self-renewal of short-term (<6 months) HSCs, resulting in a monophasic reconstitution wave formation, whereas IL-12 was more effective than TPO at supporting the in vitro self-renewal of long-term (>6 months) HSCs, resulting in a biphasic reconstitution wave formation. The control of division rate in HSCs appeared to be crucial for preventing the loss of self-renewal potential from their in vitro culture.
RESUMO
Hematopoietic stem cells (HSC) maintain homeostatic hematopoiesis via their multi-lineage differentiation and self-renewal potentials. HSC can be enriched and purified by flow cytometry relying on their cell surface markers and functional characteristics, however, these methods can not meet the need for deep analysis of HSC biological property and function because of the poor purity. Recent studies have successfully purified and tracked HSC using specifically expressed genes, which can enhance the purification efficiency of HSC, thus provide a better tool for the in-vivo study of HSC. This review summarizes the new techniques and discusses their advantages and disadvantages.