Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 792023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145961

RESUMO

2,3,5,6-Tetramethylpyrazine (TMP) is an active pharmaceutical ingredient originally isolated from Ligusticum wallichii for curing cardiovascular and cerebrovascular diseases and is widely used as a popular flavoring additive in the food industry. Hence, there is a great interest in developing new strategies to produce this high-value compound in an ecological and economical way. Herein, a cost-competitive combinational approach was proposed to accomplish green and high-efficiency production of TMP. First, microbial cell factories were constructed to produce acetoin (3-hydroxy-2-butanone, AC), an endogenous precursor of TMP, by introducing a biosynthesis pathway coupled with an intracellular NAD+ regeneration system to the wild-type Escherichia coli. To further improve the production of (R)-AC, the metabolic pathways of by-products were impaired or blocked stepwise by gene manipulation, resulting in 40.84 g/L (R)-AC with a high optical purity of 99.42% in shake flasks. Thereafter, an optimal strain designated GXASR11 was used to convert the hydrolysates of inexpensive feedstocks into (R)-AC and achieved a titer of 86.04 g/L within 48 h in a 5-L fermenter under optimized fermentation conditions. To the best of our knowledge, this is the highest (R)-AC production with high optical purity (≥98%) produced from non-food raw materials using recombinant E. coli. The supernatant of fermentation broth was mixed with diammonium phosphate (DAP) to make a total volume of 20 ml and transferred to a high-pressure microreactor. Finally, 56.72 g/L TMP was obtained in 3 h via the condensation reaction with a high conversion rate (85.30%) under optimal reaction conditions. These results demonstrated a green and sustainable approach to efficiently produce high-valued TMP, which realized value addition of low-cost renewables.

2.
RSC Adv ; 8(53): 30512-30519, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35546830

RESUMO

Acetoin is an important platform chemical with a variety of applications in foods, cosmetics, chemical synthesis, and especially in the asymmetric synthesis of optically active pharmaceuticals. It is also a useful breath biomarker for early lung cancer diagnosis. In order to enhance production of optical (S)-acetoin and facilitate this building block for a series of chiral pharmaceuticals derivatives, we have developed a systematic approach using in situ-NADH regeneration systems and promising diacetyl reductase. Under optimal conditions, we have obtained 52.9 g L-1 of (S)-acetoin with an enantiomeric purity of 99.5% and a productivity of 6.2 g (L h)-1. The results reported in this study demonstrated that the production of (S)-acetoin could be effectively improved through the engineering of cofactor regeneration with promising diacetyl reductase. The systematic approach developed in this study could also be applied to synthesize other optically active α-hydroxy ketones, which may provide valuable benefits for the study of drug development.

3.
Curr Top Med Chem ; 17(21): 2359-2369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413949

RESUMO

As a subset of glycosyltransferases, the family of sialyltransferases catalyze transfer of sialic acid (Sia) residues to terminal non-reducing positions on oligosaccharide chains of glycoproteins and glycolipids, utilizing CMP-Neu5Ac as the activated sugar nucleotide donor. In the four known sialyltransferase families (ST3Gal, ST6Gal, ST6GalNAc and ST8Sia), the ST8Sia family catalyzes synthesis of α2, 8-linked sialic/polysialic acid (polySia) chains according to their acceptor specificity. We have determined the 3D structural models of the ST8Sia family members, designated ST8Sia I (1), II(2), IV(4), V(5), and VI(6) using the Phyre2 server. Accuracy of these predicted models are based on the ST8Sia III crystal structure as the calculated template. The common structural features of these models are: (1) Their parallel templates and disulfide bonds are buried within the enzymes and are predominately surrounded by helices; (2) The anti-parallel ß-sheets are located at the N-terminal region of the enzymes; (3) The mono-sialytransferases (mono-STs), ST8Sia I and ST8Sia VI, contain only a single pair of disulfide bonds, and there are no anti-parallel ß-sheets in ST8Sia VI; (4) The Nterminal region of all of the mono-STs are located some distant away from their core structure; (5) These conformational features show that the 3D structures of the mono-STs are less compact than the two polySTs, ST8Sia II and ST8Sia IV, and the oligo-ST, ST8Sia III. These structural features relate to the catalytic specificity of the monoSTs; (6) In contrast, the more compact structural features of ST8Sia II, ST8Sia IV and ST8Sia III relate to their ability to catalyze the processive synthesis of oligo- (ST8Sia III) and polySia chains (ST8Sia II & ST8Sia IV); (7) Although ST8Sia II, III and IV have similar conformations in their corresponding polysialyltransferase domain (PSTD) and polybasic region (PBR) motifs, the structure of ST8Sia III is less compact than ST8Sia II and ST8Sia IV, and the amino acid components of the several three-residue-loops in the two motifs of ST8Sia III are different from that in ST8Sia II and ST8Sia IV. This is likely the structural basis for why ST8Sia III is an oligoST and not able to polysialylate and; (8) In contrast, essentially all amino acids within the threeresidue- loops in the PSTD of ST8Sia II and ST8Sia IV are highly conserved, and many amino acids in the loops and the helices of these two motifs are critical for NCAM polysialylation, as determined by mutational analysis and confirmed by our recent NMR results. In summary, these new findings provide further insights into the molecular mechanisms underlying polyST-NCAM recognition, polySTpolySia/ oligoSia interactions, and polysialylation of NCAM.


Assuntos
Sialiltransferases/química , Sialiltransferases/metabolismo , Animais , Bactérias/enzimologia , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
4.
J Biomol Struct Dyn ; 33(9): 1957-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25375237

RESUMO

Although not being classified as the most fundamental protein structural elements like α-helices and ß-strands, the loop segment may play considerable roles for protein stability, flexibility, and dynamic activity. Meanwhile, the protein loop is also quite elusive; i.e. its interactions with the other parts of protein as well as its own shape-maintaining forces have still remained as a puzzle or at least not quite clear yet. Here, we report a molecular force, the so-called polar hydrogen-π interaction (Hp-π), which may play an important role in supporting the backbones of protein loops. By conducting the potential energy surface scanning calculations on the quasi π-plane of peptide bond unit, we have observed the following intriguing phenomena: (1) when the polar hydrogen atom of a peptide unit is perpendicularly pointing to the π-plane of other peptide bond units, a remarkable Hp-π interaction occurs; (2) the interaction is distance and orientation dependent, acting in a broad space, and belonging to the 'point-to-plane' one. The molecular force reported here may provide useful interaction concepts and insights into better understanding the loop's unique stability and flexibility feature, as well as the driving force of the protein global folding.


Assuntos
Sequência de Aminoácidos , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína
5.
Med Chem ; 11(3): 235-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25548931

RESUMO

Due to the low toxicity, easy synthesis, rapid elimination, and less side effect, more and more peptide inhibitors are emerging as the effective drugs that are clinically used in therapies of a number of diseases. At the same time the computer-aided drug design (CADD) methods have remarkably developed. In this mini review the newly developed peptide inhibitors and drugs are introduced, including peptide vaccines for cancers, peptide inhibitors for HIV, Alzheimer's disease and related diseases, and the peptides as the leading compounds of drugs. The recent progress in the theory and methodology of peptide inhibitor design is reviewed. (1) The flexible protein-peptide docking model is introduced, in which the peptide structures are treated as segment-flexible chains using genetic algorithm and special force field parameters. (2) The "Wenxiang diagram" is illustrated for protein-peptide interaction analysis that has been successfully used in the coiled-coil interaction analysis. (3) The "Distorted key" theory is reviewed, which is an effective method to convert the peptide inhibitors to the small chemical drugs. (4) The amino acid property-based peptide prediction method (AABPP) is described that is a twolevel QSAR prediction network for the bioactivity prediction of peptide inhibitors. (5) Finally, several types of molecular interactions between protein and peptide ligands are summarized, including cation-π interactions; polar hydrogen-π interactions; and π-π stocking interactions.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Peptídeos/química , Peptídeos/farmacologia , Animais , Humanos , Peptídeos/síntese química , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA