Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1137369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065141

RESUMO

Background: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is associated with high mortality rates. Viral and bacterial coinfection is the primary cause of AECOPD. How coinfection with these microbes influences host inflammatory response and the gut microbiota composition is not entirely understood. Methods: We developed a mouse model of AECOPD by cigarette smoke exposure and sequential infection with influenza H1N1 virus and non-typeable Haemophilus influenzae (NTHi). Viral and bacterial titer was determined using MDCK cells and chocolate agar plates, respectively. The levels of cytokines, adhesion molecules, and inflammatory cells in the lungs were measured using Bio-Plex and flow cytometry assays. Gut microbiota was analyzed using 16S rRNA gene sequencing. Correlations between cytokines and gut microbiota were determined using Spearman's rank correlation coefficient test. Results: Coinfection with H1N1 and NTHi resulted in more severe lung injury, higher mortality, declined lung function in COPD mice. H1N1 enhanced NTHi growth in the lungs, but NTHi had no effect on H1N1. In addition, coinfection increased the levels of cytokines and adhesion molecules, as well as immune cells including total and M1 macrophages, neutrophils, monocytes, NK cells, and CD4 + T cells. In contrast, alveolar macrophages were depleted. Furthermore, coinfection caused a decline in the diversity of gut bacteria. Muribaculaceae, Lactobacillus, Akkermansia, Lachnospiraceae, and Rikenella were further found to be negatively correlated with cytokine levels, whereas Bacteroides was positively correlated. Conclusion: Coinfection with H1N1 and NTHi causes a deterioration in COPD mice due to increased lung inflammation, which is correlated with dysbiosis of the gut microbiota.

2.
Front Microbiol ; 13: 845269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755996

RESUMO

The human coronavirus OC43 (HCoV-OC43) is one of the most common causes of common cold but can lead to fatal pneumonia in children and elderly. However, the available animal models of HCoV-OC43 did not show respiratory symptoms that are insufficient to assist in screening antiviral agents for respiratory diseases. In this study, we adapted the HCoV-OC43 VR-1558 strain by serial passage in suckling C57BL/6 mice and the resulting mouse-adapted virus at passage 9 (P9) contained 8 coding mutations in polyprotein 1ab, spike (S) protein, and nucleocapsid (N) protein. Pups infected with the P9 virus significantly lost body weight and died within 5 dpi. In cerebral and pulmonary tissues, the P9 virus replication induced the production of G-CSF, IFN-γ, IL-6, CXCL1, MCP-1, MIP-1α, RANTES, IP-10, MIP-1ß, and TNF-α, as well as pathological alterations including reduction of neuronal cells and typical symptoms of viral pneumonia. We found that the treatment of arbidol hydrochloride (ARB) or Qingwenjiere Mixture (QJM) efficiently improved the symptoms and decreased n gene expression, inflammatory response, and pathological changes. Furthermore, treating with QJM or ARB raised the P9-infected mice's survival rate within a 15 day observation period. These findings suggested that the new mouse-adapted HCoV-OC43 model is applicable and reproducible for antiviral studies of HCoV-OC43.

3.
Acta Pharmacol Sin ; 41(9): 1178-1196, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504068

RESUMO

ß-Sitosterol (24-ethyl-5-cholestene-3-ol) is a common phytosterol Chinese medical plants that has been shown to possess antioxidant and anti-inflammatory activity. In this study we investigated the effects of ß-sitosterol on influenza virus-induced inflammation and acute lung injury and the molecular mechanisms. We demonstrate that ß-sitosterol (150-450 µg/mL) dose-dependently suppresses inflammatory response through NF-κB and p38 mitogen-activated protein kinase (MAPK) signaling in influenza A virus (IAV)-infected cells, which was accompanied by decreased induction of interferons (IFNs) (including Type I and III IFN). Furthermore, we revealed that the anti-inflammatory effect of ß-sitosterol resulted from its inhibitory effect on retinoic acid-inducible gene I (RIG-I) signaling, led to decreased STAT1 signaling, thus affecting the transcriptional activity of ISGF3 (interferon-stimulated gene factor 3) complexes and resulting in abrogation of the IAV-induced proinflammatory amplification effect in IFN-sensitized cells. Moreover, ß-sitosterol treatment attenuated RIG-I-mediated apoptotic injury of alveolar epithelial cells (AEC) via downregulation of pro-apoptotic factors. In a mouse model of influenza, pre-administration of ß-sitosterol (50, 200 mg·kg-1·d-1, i.g., for 2 days) dose-dependently ameliorated IAV-mediated recruitment of pathogenic cytotoxic T cells and immune dysregulation. In addition, pre-administration of ß-sitosterol protected mice from lethal IAV infection. Our data suggest that ß-sitosterol blocks the immune response mediated by RIG-I signaling and deleterious IFN production, providing a potential benefit for the treatment of influenza.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Antivirais/uso terapêutico , Proteína DEAD-box 58/metabolismo , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sitosteroides/uso terapêutico , Células A549 , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Animais , Antivirais/análise , Apoptose/efeitos dos fármacos , Cães , Feminino , Células HEK293 , Humanos , Inflamação/patologia , Inflamação/virologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Interferon Tipo I/metabolismo , Interferons/metabolismo , Pulmão/patologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Plantas/química , Fator de Transcrição STAT1/metabolismo , Sitosteroides/análise , Interferon lambda
4.
Clin Otolaryngol ; 45(3): 394-401, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32058675

RESUMO

OBJECTIVES: To evaluate the clinical efficacy of a high-efficiency air purifier in patients with allergic rhinitis. DESIGN: We conducted a randomised, double-blind, clinical controlled trial with active and inactive versions of an air purifier. Our study included patients with allergic rhinitis who were sensitive to Artemisia pollen and treatment of the indoor environment using air filtration at night. We evaluated the clinical efficacy of indoor air filtration during the Artemisia pollen scattering season in Yulin City in Shanxi Province, China. SETTING: The First Hospital of Yulin (Yulin City, Shanxi Province, China). PARTICIPANTS: A total of 90 patients with allergic rhinitis who were sensitive to allergens of Artemisia pollen were randomly assigned to one of two groups in equal numbers. MAIN OUTCOME MEASURES: The primary outcome measure was the difference in visual analogue scale scores from baseline. Secondary outcomes were changes from baseline in nasal symptoms, allergy symptom scores, responses to the Rhinoconjunctivitis Quality of Life Questionnaire, Epworth Sleepiness Scale scores and tolerability scores for the air purifier. RESULTS: Based on the allergy symptom score, we found significant differences in rhinitis symptoms between the groups who used the active versus the inactive air purifier. CONCLUSIONS: The results of our investigation demonstrated the health benefits of particle filtration.


Assuntos
Filtros de Ar , Artemisia , Pólen/efeitos adversos , Rinite Alérgica/etiologia , Rinite Alérgica/terapia , Adulto , Poluição do Ar em Ambientes Fechados , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rinite Alérgica/diagnóstico , Resultado do Tratamento
5.
Eur J Pharmacol ; 860: 172543, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31323223

RESUMO

Ergosterol peroxide has been shown to exhibit anti-tumor, antioxidant and anti-bacterial properties. However, the effects of ergosterol peroxide isolated from the herbal Baphicacanthus cusia root on influenza virus infection remain poorly understood. In the present study, ergosterol peroxide (compound 22) was obtained from the B. cusia root and subjected to investigation regarding its immunoregulatory effect on influenza A virus (IAV)-induced inflammation in A549 human alveolar epithelial cells. The structure of compound 22 isolated from B. cusia root. was elucidated by NMR analyses. Structure determination showed that the chemical structure of compound 22 closely resembles that of ergosterol peroxide. We observed that ergosterol peroxide treatment significantly suppressed IAV-induced upregulation of RIG-I expression. Additionally, ergosterol peroxide inhibited the activation of RIG-I downstream signaling pathways, including p38 MAP kinase and NF-κB, which ultimately resulted in the reduced production of an array of pro-inflammatory mediators and interferons (IFN-ß and IFN-λ1). Interestingly, inhibitory effects of ergosterol peroxide on the expression of IFNs did not affect the expression of antiviral effectors or enhance viral replication. On the other hand, ergosterol peroxide effectively abolished the amplified production of pro-inflammatory mediators in cells pretreated with IFN-ß (500 ng/ml) prior to IAV infection. Moreover, Annexin V and Hoechst 33258 staining revealed that increased apoptosis of IAV-infected cells was reversed by the presence of ergosterol peroxide. Our findings suggest that ergosterol peroxide from the B. cusia root suppressed IAV-associated inflammation and apoptosis via blocking RIG-I signaling, which may serve as a supplementary approach to the treatment of influenza.


Assuntos
Apoptose/efeitos dos fármacos , Proteína DEAD-box 58/metabolismo , Ergosterol/análogos & derivados , Vírus da Influenza A Subtipo H1N1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Células A549 , Animais , Cães , Ergosterol/química , Ergosterol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Inflamação/virologia , Mediadores da Inflamação/metabolismo , Interferons/biossíntese , Células Madin Darby de Rim Canino , Receptores Imunológicos
6.
Mol Med Rep ; 19(1): 563-572, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30483751

RESUMO

Eucommia ulmoides Oliver (Du-Zhong) is an ancient Chinese herbal remedy used for the treatment of various diseases. To date, the effects of its constituent lignans on influenza viruses remain to be elucidated. In the present study, a lignan glycoside was isolated and purified from Eucommia ulmoides Oliver. Its structures were identified via extensive spectroscopic analysis, and its antiviral and anti­inflammatory activities, specifically against influenza viruses, were determined via a cytopathic effect (CPE) assay, plaque­reduction assays, a progeny virus yield reduction assay, reverse transcription­quantitative polymerase chain reaction analysis and a Luminex assay. Additionally, western blot analysis was performed to investigate the underlying mechanisms of its effects against influenza viruses. The chemical and spectroscopic methods determined the structure of lignan glycoside to be (+)­pinoresinol­O­ß­D­glucopyranoside. The CPE assay showed that (+)­pinoresinol­O­ß­D­glucopyranoside exerted inhibitory activities with 50% inhibition concentration values of 408.81±5.24 and 176.24±4.41 µg/ml against the influenza A/PR/8/34 (H1N1) and A/Guangzhou/GIRD07/09 (H1N1) strains, respectively. Its antiviral properties were confirmed by plaque reduction and progeny virus yield reduction assays. Additional mechanistic analyses indicated that the anti­H1N1 virus­induced effects of (+)­pinoresinol­O-ß­D-glucopyranoside were likely due to inactivation of the nuclear factor­κB, p38 mitogen­activated protein kinase and AKT signaling pathways. Furthermore, (+)­pinoresinol­O­ß­D­glucopyranoside exhibited pronounced inhibitory effects on the expression of influenza H1N1 virus­induced pro­inflammatory mediators, including tumor necrosis factor­α, interleukin (IL)­6, IL­8 and monocyte chemoattractant protein 1. The data obtained suggest that (+)­pinoresinol­O­ß­D-glucopyranoside may be a candidate drug for treating influenza H1N1 virus infection.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Eucommiaceae/química , Furanos/farmacologia , Glicosídeos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Lignanas/farmacologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Humanos , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA