Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303989

RESUMO

Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.


Assuntos
Potenciais de Ação , Gânglios Espinais/citologia , Neuralgia/fisiopatologia , Neurônios Aferentes/fisiologia , Animais , Células Cultivadas , Gânglios Espinais/fisiopatologia , Masculino , Plasticidade Neuronal , Neurônios Aferentes/classificação , Ratos , Ratos Sprague-Dawley
2.
Sci Rep ; 5: 16713, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26577374

RESUMO

Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron's ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4(-) Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4(-) Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy.


Assuntos
Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mecanotransdução Celular , Nociceptores/metabolismo , Radiculopatia/genética , Radiculopatia/fisiopatologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Genes fos , Hiperalgesia/etiologia , Potenciais da Membrana , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neuralgia/etiologia , Fosforilação , Radiculopatia/complicações , Radiculopatia/etiologia , Ratos , Regulação para Cima
3.
J Clin Invest ; 125(8): 3226-40, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26168219

RESUMO

Neuropathic pain remains a pressing clinical problem. Here, we demonstrate that a local, intrathecal (i.t.) injection of bone marrow stromal cells (BMSCs) following lumbar puncture alleviates early- and late-phase neuropathic pain symptoms, such as allodynia and hyperalgesia, for several weeks in murine chronic constriction injury (CCI) and spared nerve injury models. Moreover, i.t. BMSCs reduced CCI-induced spontaneous pain and axonal injury of dorsal root ganglion (DRG) neurons and inhibited CCI-evoked neuroinflammation in DRGs and spinal cord tissues. BMSCs secreted TGF-ß1 into the cerebrospinal fluid, and neutralization of TGF-ß1, but not IL-10, reversed the analgesic effect of BMSCs. Conversely, i.t. administration of TGF-ß1 potently inhibited neuropathic pain. TGF-ß1 acted as a powerful neuromodulator and rapidly (within minutes) suppressed CCI-evoked spinal synaptic plasticity and DRG neuronal hyperexcitability via TGF-ß receptor 1-mediated noncanonical signaling. Finally, nerve injury upregulated CXCL12 in lumbar L4-L6 DRGs, and this upregulation caused migration of i.t.-injected BMSCs to DRGs through the CXCL12 receptor CXCR4, which was expressed on BMSCs. BMSCs that migrated from the injection site survived at the border of DRGs for more than 2 months. Our findings support a paracrine mechanism by which i.t. BMSCs target CXCL12-producing DRGs to elicit neuroprotection and sustained neuropathic pain relief via TGF-ß1 secretion.


Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Neuralgia/metabolismo , Neuralgia/terapia , Comunicação Parácrina , Fator de Crescimento Transformador beta1/metabolismo , Aloenxertos , Animais , Movimento Celular , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Potenciais Evocados , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Masculino , Camundongos , Neuralgia/patologia , Neuralgia/fisiopatologia , Plasticidade Neuronal , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Células Estromais/metabolismo
4.
Nat Commun ; 6: 6820, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25865668

RESUMO

Synaptic plasticity is the cornerstone of processes underlying persistent nociceptive activity-induced changes in normal nociceptive sensitivity. Kalirin-7 is a multifunctional guanine-nucleotide-exchange factor (GEF) for Rho GTPases that is characterized by its localization at excitatory synapses, interactions with glutamate receptors and its ability to dynamically modulate the neuronal cytoskeleton. Here we show that spinally expressed Kalirin-7 is required for persistent nociceptive activity-dependent synaptic long-term potentiation as well as activity-dependent remodelling of synaptic spines in the spinal dorsal horn, thereby orchestrating functional and structural plasticity during the course of inflammatory pain.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Potenciação de Longa Duração/fisiologia , Nociceptividade/fisiologia , Dor/genética , Corno Dorsal da Medula Espinal/metabolismo , Sinapses/metabolismo , Animais , Dependovirus/genética , Regulação da Expressão Gênica , Vetores Genéticos , Fatores de Troca do Nucleotídeo Guanina/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Corno Dorsal da Medula Espinal/fisiopatologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Brain ; 137(Pt 8): 2193-209, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24919967

RESUMO

Accumulating evidence suggests that spinal cord astrocytes play an important role in neuropathic pain sensitization by releasing astrocytic mediators (e.g. cytokines, chemokines and growth factors). However, it remains unclear how astrocytes control the release of astrocytic mediators and sustain late-phase neuropathic pain. Astrocytic connexin-43 (now known as GJ1) has been implicated in gap junction and hemichannel communication of cytosolic contents through the glial syncytia and to the extracellular space, respectively. Connexin-43 also plays an essential role in facilitating the development of neuropathic pain, yet the mechanism for this contribution remains unknown. In this study, we investigated whether nerve injury could upregulate connexin-43 to sustain late-phase neuropathic pain by releasing chemokine from spinal astrocytes. Chronic constriction injury elicited a persistent upregulation of connexin-43 in spinal astrocytes for >3 weeks. Spinal (intrathecal) injection of carbenoxolone (a non-selective hemichannel blocker) and selective connexin-43 blockers (connexin-43 mimetic peptides (43)Gap26 and (37,43)Gap27), as well as astroglial toxin but not microglial inhibitors, given 3 weeks after nerve injury, effectively reduced mechanical allodynia, a cardinal feature of late-phase neuropathic pain. In cultured astrocytes, TNF-α elicited marked release of the chemokine CXCL1, and the release was blocked by carbenoxolone, Gap26/Gap27, and connexin-43 small interfering RNA. TNF-α also increased connexin-43 expression and hemichannel activity, but not gap junction communication in astrocyte cultures prepared from cortices and spinal cords. Spinal injection of TNF-α-activated astrocytes was sufficient to induce persistent mechanical allodynia, and this allodynia was suppressed by CXCL1 neutralization, CXCL1 receptor (CXCR2) antagonist, and pretreatment of astrocytes with connexin-43 small interfering RNA. Furthermore, nerve injury persistently increased excitatory synaptic transmission (spontaneous excitatory postsynaptic currents) in spinal lamina IIo nociceptive synapses in the late phase, and this increase was suppressed by carbenoxolone and Gap27, and recapitulated by CXCL1. Together, our findings demonstrate a novel mechanism of astrocytic connexin-43 to enhance spinal cord synaptic transmission and maintain neuropathic pain in the late-phase via releasing chemokines.


Assuntos
Astrócitos/metabolismo , Quimiocinas/metabolismo , Conexina 43/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Comportamento Animal/fisiologia , Células Cultivadas , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL1/metabolismo , Quimiocinas/biossíntese , Conexina 43/fisiologia , Modelos Animais de Doenças , Hiperalgesia/etiologia , Hiperalgesia/terapia , Injeções Espinhais , Camundongos , Camundongos Transgênicos , Neuralgia/etiologia , Neuralgia/terapia , Peptídeos/administração & dosagem , Peptídeos/fisiologia , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Medula Espinal/citologia , Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
6.
Exp Neurol ; 261: 328-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24852102

RESUMO

Recent studies have shown that CXCL1 upregulation in spinal astrocytes is involved in the maintenance of neuropathic pain. However, whether and how CXCL1 regulates inflammatory pain remains unknown. Here we show that intraplantar injection of CFA increased mRNA and protein expressions of CXCL1 and its major receptor CXCR2 in the spinal cord at 6h and 3days after the injection. Immunofluorescence double staining showed that CXCL1 and CXCR2 were expressed in spinal astrocytes and neurons, respectively. Intrathecal injection of CXCL1 neutralizing antibody or CXCR2 antagonist SB225002 attenuated CFA-induced mechanical and heat hypersensitivity on post-CFA day 3. Patch-clamp recordings showed that CXCL1 potentiated NMDA-induced currents in lamina II neurons via CXCR2, and this potentiation was further increased in CFA-treated mice. Furthermore, intrathecal injection of CXCL1 increased COX-2 expression in dorsal horn neurons, which was blocked by pretreatment with SB225002 or MEK (ERK kinase) inhibitor PD98059. Finally, pretreatment with SB225002 or PD98059 decreased CFA-induced heat hyperalgesia and COX-2 mRNA/protein expression and ERK activation in the spinal cord. Taken together, our data suggest that CXCL1, upregulated and released by spinal astrocytes after inflammation, acts on CXCR2-expressing spinal neurons to increase ERK activation, synaptic transmission and COX-2 expression in dorsal horn neurons and contributes to the pathogenesis of inflammatory pain.


Assuntos
Quimiocina CXCL1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Neurônios/metabolismo , Dor/patologia , Receptores de Interleucina-8B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/patologia , Animais , Astrócitos/efeitos dos fármacos , Quimiocina CXCL1/farmacologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Adjuvante de Freund/toxicidade , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Dor/etiologia , Compostos de Fenilureia/farmacologia , Fosfopiruvato Hidratase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA