Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1184588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593179

RESUMO

Pyroptosis is a form of pro-inflammatory cell death that can be mediated by gasdermin D (GSDMD) activation induced by inflammatory caspases such as caspase-1. Emerging evidence suggests that targeting GSDMD activation or pyroptosis may facilitate the reduction of vascular inflammation and atherosclerotic lesion development. The current study investigated the therapeutic effects of inhibition of GSDMD activation by the novel GSDMD inhibitor N-Benzyloxycarbonyl-Leu-Leu-Ser-Asp(OMe)-fluoromethylketone (Z-LLSD-FMK), the specific caspase-1 inhibitor N-Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (Z-YVAD-FMK), and a combination of both on atherosclerosis in ApoE-/- mice fed a western diet at 5 weeks of age, and further determined the efficacy of these polypeptide inhibitors in bone marrow-derived macrophages (BMDMs). In vivo studies there was plaque formation, GSDMD activation, and caspase-1 activation in aortas, which increased gradually from 6 to 18 weeks of age, and increased markedly at 14 and 18 weeks of age. ApoE-/- mice were administered Z-LLSD-FMK (200 µg/day), Z-YVAD-FMK (200 µg/day), a combination of both, or vehicle control intraperitoneally from 14 to 18 weeks of age. Treatment significantly reduced lesion formation, macrophage infiltration in lesions, protein levels of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pyroptosis-related proteins such as activated caspase-1, activated GSDMD, cleaved interleukin(IL)-1ß, and high mobility group box 1 in aortas. No overt differences in plasma lipid contents were detected. In vitro treatment with these polypeptide inhibitors dramatically decreased the percentage of propidium iodide-positive BMDMs, the release of lactate dehydrogenase and IL-1ß, and protein levels of pyroptosis-related proteins both in supernatants and cell lysates elevated by lipopolysaccharide + nigericin. Notably however, there were no significant differences in the above-mentioned results between the Z-LLSD-FMK group and the Z-YVAD-FMK group, and the combination of both did not yield enhanced effects. These findings indicate that suppression of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and lesion development in ApoE-/- mice.

2.
Biochem Biophys Res Commun ; 611: 91-98, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35483224

RESUMO

Pressure overload induced cardiac remodeling is associated with a complex spectrum of pathophysiological mechanisms. As inflammatory cells, macrophages maintain a critical position in mechanical stress-induced myocardial remodeling. HMGB1 is a highly conserved, ubiquitous protein in various types of cells whose biological roles are closely dependent on subcellular sites. However, whether HMGB1 expressed in macrophages performs the protective or pathological responses in cardiac remodeling is unknown. In this study, we generated the myeloid-specific HMGB1 knockout mice and detected the effects of macrophage HMGB1 in response to pathophysiological stress. Our data showed HMGB1 in macrophages played a protective role against the pressure overload induced cardiac pathophysiology. The deletion of HMGB1 in macrophages gains more differentiation of M1-type pro-inflammatory macrophage during the mechanical stress-induced myocardial remodeling, thereby aggravating the inflammatory response in whole heart, resulting in accelerated deterioration of cardiac function. Moreover, in vitro data also validated HMGB1 got involved in the process of macrophage polarization. Macrophages without HMGB1 are more inclined to differentiate into M1 during the stretch process. In summary, the present results indicated that loss of HMGB1 in macrophages can exacerbate heart failure through increased differentiation of pro-inflammatory macrophages and enhanced inflammatory response.


Assuntos
Proteína HMGB1 , Animais , Proteína HMGB1/metabolismo , Coração , Macrófagos/metabolismo , Camundongos , Miocárdio/metabolismo , Remodelação Ventricular/fisiologia
3.
Arterioscler Thromb Vasc Biol ; 42(3): 305-325, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045729

RESUMO

BACKGROUND: ANG (angiogenin) is essential for cellular adaptation to endoplasmic reticulum (ER) stress, a process closely associated with cardiovascular diseases, including atherosclerosis. We aimed to investigate the role of ANG in the progression of atherosclerosis and elucidate its underlying molecular mechanisms. METHODS: We constructed adenoassociated virus 9 ANG overexpression vectors and endothelial ANG- and ApoE (apolipoprotein E)-deficient mice to determine the effects of ANG on ER stress and atherosclerotic lesions. RNA sequencing of endothelial ANG- and ApoE-deficient mice identified ANG-dependent downregulation of ST3GAL5 (ST3 beta-galactoside alpha-2,3-sialyltransferase 5) expression, and the direct regulation of ST3GAL5 by ANG was verified by chromatin immunoprecipitation sequencing and luciferase reporter assay results. RESULTS: Reanalysis of expression profiling datasets indicated decreased ANG levels in patients' atherosclerotic lesions, and these data were validated in aortas from ApoE-/- mice. ER stress marker and adhesion molecule levels, aortic root lesions and macrophage deposition were substantially reduced in ApoE-/- mice injected with an adenoassociated virus 9 ANG without signal peptide (ANG-ΔSP) overexpression vector compared with empty and full-length ANG overexpression vectors. Endothelial ANG deficiency significantly elevated ER stress and increased adhesion molecule expression, which aggravated atherosclerotic lesions and enhanced THP-1 monocyte adhesion to endothelial cells in vivo and in vitro, respectively. Furthermore, ANG-ΔSP overexpression significantly attenuated oxidized low-density lipoprotein-induced ER stress and THP-1 monocyte adhesion to endothelial cells, which were reversed by ST3GAL5 inhibition. CONCLUSIONS: These results suggest that endothelial intracellular ANG is a novel therapeutic against atherosclerosis and exerts atheroprotective effects via ST3GAL5-mediated ER stress suppression.


Assuntos
Aterosclerose/prevenção & controle , Estresse do Retículo Endoplasmático/fisiologia , Ribonuclease Pancreático/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , Modelos Cardiovasculares , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease Pancreático/deficiência , Ribonuclease Pancreático/genética , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/genética , Sialiltransferases/metabolismo , Regulação para Cima
4.
Curr Pharm Des ; 28(9): 751-759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34951571

RESUMO

BACKGROUND AND OBJECTIVE: Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows to possess therapeutic potential. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI. METHODS: Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson's trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB. RESULTS: Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1ß and tumor necrosis factor- α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor- 1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days. CONCLUSION: STS improved pathological remodeling post-MI, and the associated therapeutic effects may be a result of a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Cicatriz/patologia , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Fenantrenos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA