Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Hematol Oncol ; 17(1): 14, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520028

RESUMO

Protein degraders, emerging as a novel class of therapeutic agents, have gained widespread attention due to their advantages. They have several advantages over traditional small molecule inhibitors, including high target selectivity and ability to target "undruggable" targets and overcome inhibitor drug resistance. Tremendous research and development efforts and massive investment have resulted in rapid advancement of protein degrader drug discovery in recent years. Here, we overview the latest clinical and preclinical updates on protein degraders presented at the 2023 ASH Annual Meeting.


Assuntos
Neoplasias Hematológicas , Proteólise , Humanos , Descoberta de Drogas , Neoplasias Hematológicas/tratamento farmacológico , Congressos como Assunto
2.
Front Immunol ; 14: 1215450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680626

RESUMO

Objectives: This study aims to assess the efficacy of tofacitinib (TOF) plus iguratimod (IGU) in rheumatoid arthritis (RA) with usual interstitial pneumonia (UIP) (RA-UIP). Methods: This was a prospective observational cohort, single-center study. Data from 78 RA-UIP patients treated with TOF plus IGU, IGU plus conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs), and csDMARDs were analyzed. Clinically relevant responses in RA activity assessment, pulmonary function tests (PFTs), and high-resolution computed tomography (HRCT) assessment at baseline and follow-up were compared between groups to evaluate the efficacy of TOF plus IGU. Results: A total of 78 patients were followed up for at least 6 months after treatment. There were significant changes in sedimentation rate (ESR), C reactive protein (CRP), and disease activity score (DAS) 28-CRP during the follow-up within each treatment group, but there was no statistically significant difference between the two groups. After 6 months of TOF plus IGU treatment, forced vital capacity (FVC)% (84.7 ± 14.7 vs. 90.7 ± 15.4) and HRCT fibrosis score (7.3 ± 3.4 vs. 7.0 ± 5.6) showed a significant improvement compared to the csDMARDs group (P = 0.031, P = 0.015). The TOF plus IGU-treated patients had a significantly higher regression and lower deterioration than the csDMARDs-treated patients (P = 0.026, P = 0.026) and had a significantly higher response (regression + stability), with overall response rates of 66.7% (16/24) vs. 35.7% (10/28) (P = 0.027), respectively. Conclusion: Our results indicate that TOF plus IGU can simultaneously relieve RA and RA-UIP and be better than the csDMARDs with a higher response rate in RA-UIP, which may be a potential choice for "dual treat-to-target".


Assuntos
Antirreumáticos , Artrite Reumatoide , Fibrose Pulmonar Idiopática , Humanos , Estudos Prospectivos , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Proteína C-Reativa
3.
J Mol Biol ; 433(15): 167090, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34090922

RESUMO

Members of the αv family of integrins regulate activation of transforming growth factor beta (TGFß) and are directly involved in pro-tumorigenic phenotypes. Thus, αv integrins may be therapeutic targets for fibrosis and cancer, yet the isolation of selective inhibitors is currently a challenge. We generated synthetic antibodies selective for αv integrins by phage display selections on cell lines that displayed integrin heterodimers. We identified antibodies that targeted two distinct epitopes on cell-surface αv integrins and partially inhibited cell adhesion mediated by interactions between integrins and the latency-associated peptide, part of the pro-form of TGFß. Using the isolated antibody paratope sequences we engineered a bispecific antibody capable of binding to both epitopes simultaneously; this antibody potently and completely inhibited cell adhesion mediated by integrins αvß1, αvß3 and αvß5. In addition, the bispecific antibody inhibited proliferation and migration of lung carcinoma lines, where the highest and lowest potencies observed correlated with integrin-αv cell surface expression levels. Taken together, our results demonstrate that phage display selections with live cells can yield high quality anti-integrin antibodies, which we used as biparatopic building blocks to construct a bispecific antibody that strongly inhibited integrin function and may be a therapeutic candidate for cancer and fibrosis.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Epitopos/metabolismo , Integrina alfaV/química , Neoplasias Pulmonares/metabolismo , Células A549 , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Células CHO , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cricetulus , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Integrina alfaV/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Biblioteca de Peptídeos
4.
Front Pharmacol ; 12: 821518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35280257

RESUMO

A novel formal (4 + 1) annulation between N-(o-chloromethyl)aryl amides and 3-chlorooxindoles through in situ generated aza-ortho-QMs with 3-chlorooxindoles is reported for the synthesis of a series of 2,3'-spirobi (indolin)-2'-ones in high yields. Under structured illumination microscopy, compound 3a is found to change the mitochondrial morphology and induce mitophagy pathway, which might then trigger mitophagy in cancer cells.

5.
Nat Commun ; 11(1): 2768, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488016

RESUMO

Fibrotic disorders are some of the most devastating and poorly treated conditions in developed nations, yet effective therapeutics are not identified for many of them. A major barrier for the identification of targets and successful clinical translation is a limited understanding of the human fibrotic microenvironment. Here, we construct a stromal cell atlas of human fibrosis at single cell resolution from patients with Dupuytren's disease, a localized fibrotic condition of the hand. A molecular taxonomy of the fibrotic milieu characterises functionally distinct stromal cell types and states, including a subset of immune regulatory ICAM1+ fibroblasts. In developing fibrosis, myofibroblasts exist along an activation continuum of phenotypically distinct populations. We also show that the tetraspanin CD82 regulates cell cycle progression and can be used as a cell surface marker of myofibroblasts. These findings have important implications for targeting core pathogenic drivers of human fibrosis.


Assuntos
Contratura de Dupuytren/imunologia , Contratura de Dupuytren/metabolismo , Fibrose/imunologia , Fibrose/metabolismo , Células Estromais/metabolismo , Actinas/metabolismo , Biomarcadores/metabolismo , Quimiocinas CXC/metabolismo , Contratura de Dupuytren/patologia , Fibrose/patologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Medicina Molecular , Miofibroblastos/metabolismo , Tetraspaninas/metabolismo , Microambiente Tumoral/fisiologia
6.
PLoS One ; 15(3): e0229445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160239

RESUMO

The Wnt/ß-catenin signaling pathway has been implicated in human proliferative diseases such as cancer and fibrosis. The functions of ß-catenin and several other components of this pathway have been investigated in fibrosis. However, the potential role of R-spondin proteins (RSPOs), enhancers of the Wnt/ß-catenin signaling, has not been described. A specific interventional strategy targeting this pathway for fibrosis remains to be defined. We developed monoclonal antibodies against members of the RSPO family (RSPO1, 2, and 3) and probed their potential function in fibrosis in vivo. We demonstrated that RSPO3 plays a critical role in the development of fibrosis in multiple organs. Specifically, an anti-RSPO3 antibody, OMP-131R10, when dosed therapeutically, attenuated fibrosis in carbon tetrachloride (CCl4)-induced liver fibrosis, bleomycin-induced pulmonary and skin fibrosis models. Mechanistically, we showed that RSPO3 induces multiple pro-fibrotic chemokines and cytokines in Kupffer cells and hepatocytes. We found that the anti-fibrotic activity of OMP-131R10 is associated with its inhibition of ß-catenin activation in vivo. Finally, RSPO3 was found to be highly elevated in the active lesions of fibrotic tissues in mouse models of fibrosis and in patients with idiopathic pulmonary fibrosis (IPF) and nonalcoholic steatohepatitis (NASH). Together these data provide an anti-fibrotic strategy for targeting the Wnt/ß-catenin pathway through RSPO3 blockade and support that OMP-131R10 could be an important therapeutic agent for fibrosis.


Assuntos
Anticorpos/uso terapêutico , Fibrose Pulmonar Idiopática , Hepatopatia Gordurosa não Alcoólica , Trombospondinas/fisiologia , Animais , Células Cultivadas , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
7.
Sci Adv ; 5(12): eaay0370, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31840071

RESUMO

Dissecting the molecular landscape of fibrotic disease, a major unmet need, will inform the development of novel treatment strategies to target disease progression and identify desperately needed therapeutic targets. Here, we provide a detailed single-cell analysis of the immune landscape in Dupuytren's disease, a localized fibrotic condition of the hand, and identify a pathogenic signaling circuit between stromal and immune cells. We demonstrate M2 macrophages and mast cells as key cellular sources of tumor necrosis factor (TNF) that promotes myofibroblast development. TNF acts via the inducible TNFR2 receptor and stimulates interleukin-33 (IL-33) secretion by myofibroblasts. In turn, stromal cell IL-33 acts as a potent stimulus for TNF production from immune cells. Targeting this reciprocal signaling pathway represents a novel therapeutic strategy to inhibit the low-grade inflammation in fibrosis and the mechanism that drives chronicity.


Assuntos
Contratura de Dupuytren/genética , Fibrose/genética , Interleucina-33/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Linhagem Celular , Contratura de Dupuytren/tratamento farmacológico , Contratura de Dupuytren/imunologia , Contratura de Dupuytren/patologia , Fibrose/tratamento farmacológico , Fibrose/imunologia , Fibrose/patologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/patologia , Terapia de Alvo Molecular , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Transdução de Sinais/genética , Análise de Célula Única/métodos , Fator de Necrose Tumoral alfa/imunologia
8.
Opt Express ; 23(25): 31896-907, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26698981

RESUMO

Operation of a degenerate dual-pump phase sensitive amplifier (PSA) is thoroughly numerically investigated using a multi-wave model, taking into account high-order waves associated with undesired four-wave mixing (FWM) processes. More accurate phase-sensitive signal gain characteristics are obtained compared to the conventional 3-wave model, leading to precise optimization of the pump configuration in a degenerate dual-pump PSA. The signal gain for different pump configurations, as well as the phase sensitivity, is obtained and interpreted by investigating the dominant FWM processes in terms of the corresponding phase matching. Moreover, the relation between dispersion slope and the width of the signal gain curve versus the pump-pump wavelength separation is revealed, permitting the application-oriented arbitrary tailoring of the signal gains by manipulating the dispersion profile and pump wavelength allocation.

9.
Arthritis Rheumatol ; 66(5): 1121-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24782177

RESUMO

OBJECTIVE: To investigate differences in genetic risk factors for rheumatoid arthritis (RA) in Han Chinese as compared with Europeans. METHODS: A genome-wide association study was conducted in China with 952 patients and 943 controls, and 32 variants were followed up in 2,132 patients and 2,553 controls. A transpopulation meta-analysis with results from a large European RA study was also performed to compare the genetic architecture across the 2 ethnic remote populations. RESULTS: Three non-major histocompatibility complex (non-MHC) loci were identified at the genome-wide significance level, the effect sizes of which were larger in anti-citrullinated protein antibody (ACPA)-positive patients than in ACPA-negative patients. These included 2 novel variants, rs12617656, located in an intron of DPP4 (odds ratio [OR] 1.56, P = 1.6 × 10(-21) ), and rs12379034, located in the coding region of CDK5RAP2 (OR 1.49, P = 1.1 × 10(-16) ), as well as a variant at the known CCR6 locus, rs1854853 (OR 0.71, P = 6.5 × 10(-15) ). The analysis of ACPA-positive patients versus ACPA-negative patients revealed that rs12617656 at the DPP4 locus showed a strong interaction effect with ACPAs (P = 5.3 × 10(-18) ), and such an interaction was also observed for rs7748270 at the MHC locus (P = 5.9 × 10(-8) ). The transpopulation meta-analysis showed genome-wide overlap and enrichment in association signals across the 2 populations, as confirmed by prediction analysis. CONCLUSION: This study has expanded the list of alleles that confer risk of RA, provided new insight into the pathogenesis of RA, and added empirical evidence to the emerging polygenic nature of complex trait variation driven by common genetic variants.


Assuntos
Artrite Reumatoide/etnologia , Artrite Reumatoide/genética , Povo Asiático/genética , Dipeptidil Peptidase 4/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Receptores CCR6/genética , População Branca/genética , Adulto , Alelos , Artrite Reumatoide/epidemiologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular , China/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
10.
J Neurochem ; 122(2): 404-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22537068

RESUMO

Alpha-synuclein (α-syn) is a synaptic protein that mutations have been linked to Parkinson's disease (PD), a common neurodegenerative disorder that is caused by the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). How α-syn can contribute to neurodegeneration in PD is not conclusive but it is agreed that mutations or excessive accumulation of α-syn can lead to the formation of α-syn oligomers or aggregates that interfere with normal cellular function and contribute to the degeneration of dopaminergic neurons. In this study, we found that α-syn can impair the normal dynamics of mitochondria and this effect is particular prominent in A53T α-syn mutant. In mice expressing A53T α-syn, age-dependent changes in both mitochondrial morphology and proteins that regulate mitochondrial fission and fusion were observed. In the cellular model of PD, we found that α-syn reduces the movement of mitochondria in both SH-SY5Y neuroblastoma and hippocampal neurons. Taken together, our study provides a new mechanism of how α-syn can contribute to PD through the impairment of normal dynamics of mitochondria.


Assuntos
Mitocôndrias/efeitos dos fármacos , Doença de Parkinson Secundária/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/fisiologia , Envelhecimento/fisiologia , Animais , Western Blotting , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Mitocôndrias/ultraestrutura , Rede Nervosa/patologia , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson Secundária/metabolismo , Plasmídeos/genética , Medula Espinal/metabolismo , Transfecção , beta-Sinucleína/farmacologia
11.
Cell ; 145(7): 1075-87, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21683433

RESUMO

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Assuntos
Aminoácidos/farmacologia , Compostos de Bifenilo/farmacologia , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Sítio Alostérico , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Enzimas de Conjugação de Ubiquitina , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/genética
12.
Opt Lett ; 36(6): 873-5, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21403713

RESUMO

In this Letter, we propose a phase drift cancellation method for remote radio frequency transfer. Phase fluctuation along the transmission fiber, which is induced by temperature and pressure changes, is measured and compensated by a heterodyne optoelectronic delay-locked loop. The control loop consists of a heterodyne optoelectronic phase detector, a microwave delay module, and the loop filter. We demonstrate the concept by transmitting a 10 GHz microwave frequency over 50 km single-mode fiber, with subpicosecond jitters measured at the remote end.

13.
Blood ; 114(2): 338-45, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19417207

RESUMO

IMiDs immunomodulatory drugs, including lenalidomide and pomalidomide represent a novel class of small molecule anticancer and anti-inflammatory drugs with broad biologic activities. However, the molecular mechanism through which these drugs exert their effects is largely undefined. Using pomalidomide and primary human monocytes, we report that pomalidomide rapidly and selectively activated RhoA and Rac1, but not Cdc42 or Ras, in the absence of any costimulation. Consistent with the activation of Rho GTPases, we found that pomalidomide enhanced F-actin formation, stabilized microtubules, and increased cell migration, all of which were blocked by selective inhibitors of ROCK1 and Rac1. Further, we showed that in Swiss 3T3 cells, pomalidomide only activated RhoA, not Rac1 or Cdc42, and potently induced stress fiber formation. The pomalidomide effect on actin cytoskeleton was blocked by the ROCK1 inhibitor, but not Rac1 inhibitor. Finally, we demonstrated that pomalidomide was able to regulate the activity of Rho GTPases and the formation of F-actin in primary human T cells as it did in monocytes and showed that the activation of RhoA was essential for pomalidomide-induced interleukin-2 expression in T cells. These novel activities provide what we believe a critical mechanism by which IMiDs drugs function as therapeutic immunomodulatory agents.


Assuntos
Citoesqueleto/efeitos dos fármacos , Citoesqueleto/enzimologia , Imunossupressores/farmacologia , Talidomida/análogos & derivados , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/imunologia , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-2/metabolismo , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/enzimologia , Linfócitos T/imunologia , Talidomida/farmacologia
14.
Blood ; 111(9): 4690-9, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18305219

RESUMO

Decreased p27(Kip1) levels are a poor prognostic factor in many malignancies, and can occur through up-regulation of SCF(Skp2) E3 ligase function, resulting in enhanced p27 ubiquitination and proteasome-mediated degradation. While proteasome inhibitors stabilize p27(Kip1), agents inhibiting SCF(Skp2) may represent more directly targeted drugs with the promise of enhanced efficacy and reduced toxicity. Using high-throughput screening, we identified Compound A (CpdA), which interfered with SCF(Skp2) ligase function in vitro, and induced specific accumulation of p21 and other SCF(Skp2) substrates in cells without activating a heat-shock protein response. CpdA prevented incorporation of Skp2 into the SCF(Skp2) ligase, and induced G(1)/S cell-cycle arrest as well as SCF(Skp2)- and p27-dependent cell killing. This programmed cell death was caspase-independent, and instead occurred through activation of autophagy. In models of multiple myeloma, CpdA overcame resistance to dexamethasone, doxorubicin, and melphalan, as well as to bortezomib, and also acted synergistically with this proteasome inhibitor. Importantly, CpdA was active against patient-derived plasma cells and both myeloid and lymphoblastoid leukemia blasts, and showed preferential activity against neoplastic cells while relatively sparing other marrow components. These findings provide a rational framework for further development of SCF(Skp2) inhibitors as a novel class of antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Autofagia , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos , Humanos , Mieloma Múltiplo/tratamento farmacológico
15.
J Biol Chem ; 282(21): 15462-70, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17409098

RESUMO

p27, an important cell cycle regulator, blocks the G(1)/S transition in cells by binding and inhibiting Cdk2/cyclin A and Cdk2/cyclin E complexes (Cdk2/E). Ubiquitination and subsequent degradation play a critical role in regulating the levels of p27 during cell cycle progression. Here we provide evidence suggesting that both Cdk2/E and phosphorylation of Thr(187) on p27 are essential for the recognition of p27 by the SCF(Skp2/Cks1) complex, the ubiquitin-protein isopeptide ligase (E3). Cdk2/E provides a high affinity binding site, whereas the phosphorylated Thr(187) provides a low affinity binding site for the Skp2/Cks1 complex. Furthermore, binding of phosphorylated p27/Cdk2/E to the E3 complex showed positive cooperativity. Consistently, p27 is also ubiquitinated in a similarly cooperative manner. In the absence of p27, Cdk2/E and Cks1 increase Skp2 phosphorylation. This phosphorylation enhances Skp2 auto-ubiquitination, whereas p27 inhibits both phosphorylation and auto-ubiquitination of Skp2.


Assuntos
Proteínas de Transporte/química , Quinases Ciclina-Dependentes/química , Complexos Multiproteicos/química , Processamento de Proteína Pós-Traducional , Proteínas Quinases Associadas a Fase S/química , Ubiquitina-Proteína Ligases/química , Animais , Quinases relacionadas a CDC2 e CDC28 , Proteínas de Transporte/metabolismo , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Ciclina A/química , Ciclina A/metabolismo , Ciclina E/química , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/química , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fase G1/fisiologia , Humanos , Complexos Multiproteicos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fase S/fisiologia , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
J Clin Immunol ; 27(2): 210-20, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17308870

RESUMO

COX2 (prostaglandin G/H synthase, PTGS2) is a well-validated target in the fields of both oncology and inflammation. Despite their significant toxicity profile, non-steroidal anti-inflammatory drugs (NSAIDs) have become standard of care in the treatment of many COX2-mediated inflammatory conditions. In this report, we show that one IMiDs((R)) immunomodulatory drug, CC-4047, can reduce the levels of COX2 and the production of prostaglandins (PG) in human LPS-stimulated monocytes. The inhibition of COX2 by CC-4047 occurs at the level of gene transcription, by reducing the LPS-stimulated transcriptional activity at the COX2 gene. Because it is a transcriptional rather than an enzymatic inhibitor of COX2, CC-4047 inhibition of PG production is not susceptible to competition by exogenous arachadonic acid (AA). The distinct mechanisms of action allow CC-4047 and a COX2-selective NSAID to work additively to block PG secretion from monocytes. CC-4047 does not, however, block COX2 induction in or prostacyclin secretion from IL-1beta stimulated human umbilical vein endothelial cells (HUVEC) cells, nor does it inhibit COX1 in either monocytes or HUVEC cells. CC-4047 also inhibits COX2 and PG production in monocytes derived from patients with sickle cell disease (SCD). Taken together, the data in this manuscript suggest CC-4047 will provide important anti-inflammatory benefit to patients and will improve the safety of NSAIDs in the treatment of SCD or other inflammatory conditions.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas de Membrana/efeitos dos fármacos , Talidomida/análogos & derivados , Transcrição Gênica/efeitos dos fármacos , Anemia Falciforme/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Western Blotting , Sinergismo Farmacológico , Expressão Gênica/efeitos dos fármacos , Humanos , Imunoprecipitação , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nitrobenzenos/farmacologia , Prostaglandinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia , Talidomida/farmacologia
17.
Methods Enzymol ; 399: 729-40, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16338392

RESUMO

An increasing body of evidence indicates that constitutive activation of NF-kappaB contributes to tumorigenesis and inflammation. Ubiquitination and degradation of IkappaB plays an essential role in NF-kappaB activation. Here we describe an in vitro IkappaBalpha ubiquitination assay system in which purified E1, E2, SCF(beta-Trcp1) E3, IkappaBalpha, IKK2, and Ub were used to generate ubiquitinated IkappaBalpha. The ubiquitination of IkappaBalpha is strictly dependent on its phosphorylation by IKK2, as well as the presence of E1, E2, E3, and Ub. The assay was adapted into 384-well plate format in which an antibody against IkappaBalpha was used to capture IkappaBalpha, and the biotinylated ubiquitin attached to IkappaBalpha was detected with europium (Eu)-labeled streptavidin. This assay can be used to discover inhibitors of IkappaBalpha ubiquitination. Such inhibitors would block NF-kappaB activation by stabilizing IkappaB levels in cells and thus provide a new therapeutic approach to NF-kappaB-related human diseases.


Assuntos
Proteínas I-kappa B/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Técnicas In Vitro , Inibidor de NF-kappaB alfa , Fosforilação
18.
Mol Cell ; 19(5): 607-18, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16137618

RESUMO

The Chk1 kinase is a major effector of S phase checkpoint signaling during the cellular response to genotoxic stress. Here, we report that replicative stress induces the polyubiquitination and degradation of Chk1 in human cells. This response is triggered by phosphorylation of Chk1 at Ser-345, a known target site for the upstream activating kinase ATR. The ubiquitination of Chk1 is mediated by E3 ligase complexes containing Cul1 or Cul4A. Treatment of cells with the anticancer agent camptothecin (CPT) triggers Chk1 destruction, which blocks recovery from drug-induced S phase arrest and leads to cell death. These findings indicate that ATR-dependent phosphorylation of Chk1 delivers a signal that both activates Chk1 and marks this protein for proteolytic degradation. Proteolysis of activated Chk1 may promote checkpoint termination under normal conditions, and may play an important role in the cytotoxic effects of CPT and related anticancer drugs.


Assuntos
Dano ao DNA/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteínas Quinases/metabolismo , Ubiquitina/fisiologia , Bromodesoxiuridina , Camptotecina/toxicidade , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Proteínas Culina/fisiologia , Regulação para Baixo/efeitos dos fármacos , Genes Reporter , Humanos , Fase S/efeitos dos fármacos , Fase S/fisiologia
19.
Cytokine ; 23(1-2): 1-14, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12901849

RESUMO

Bone metabolism requires tightly coupled activities exhibited by two unique cell populations, the bone-resorbing osteoclasts and the bone-forming osteoblasts. Imbalance in the function of these two cell types can result in osteoporosis, a condition characterized by loss in bone integrity and of bone mass. We developed a human bone cell culture model that allows the in vitro study of bone formation and osteoclastogenesis and employed this bone model for the screening and pharmacological analyses of protein and small molecule therapeutics. The cytokines, interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF), play an intricate role in osteoclastogenesis in this system. Neutralizing antibodies to IL-6 and GM-CSF decreased the formation of osteoclast-like cells. SP500263, an early lead compound from a novel class of selective estrogen receptor modulators (SERMs), was more efficacious than estrogen and comparable to raloxifene in blocking cytokine production and formation of osteoclast-like cells. Our research demonstrates the usefulness of the in vitro co-culture model in the dissection of molecular events relevant to bone metabolism and provides greater insight into a potential novel role for cytokines in bone resorption. Furthermore, representatives of the SP500263 family of SERMs may be effective as therapeutics for the treatment of osteoporosis.


Assuntos
Osso e Ossos/efeitos dos fármacos , Cumarínicos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-6/metabolismo , Osteoclastos/efeitos dos fármacos , Piperidinas/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Biomarcadores , Técnicas de Cocultura , Citocinas/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Interleucina-6/imunologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA