Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(24): e2308349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582522

RESUMO

Customizable and number-tunable enzyme delivery nanocarriers will be useful in tumor therapy. Herein, a phage vehicle, T4-Lox-DNA-Fe (TLDF), which adeptly modulates enzyme numbers using phage display technology to remodel the tumor microenvironment (TME) is presented. Regarding the demand for lactic acid in tumors, each phage is engineered to display 720 lactate oxidase (Lox), contributing to the depletion of lactic acid to restructure the tumor's energy metabolism. The phage vehicle incorporated dextran iron (Fe) with Fenton reaction capabilities. H2O2 is generated through the Lox catalytic reaction, amplifying the H2O2 supply for dextran iron-based chemodynamic therapy (CDT). Drawing inspiration from the erythropoietin (EPO) biosynthetic process, an EPO enhancer is constructed to impart the EPO-Keap1 plasmid (DNA) with tumor hypoxia-activated functionality, disrupting the redox homeostasis of the TME. Lox consumes local oxygen, and positive feedback between the Lox and the plasmid promotes the expression of kelch ECH Associated Protein 1 (Keap1). Consequently, the downregulation of the antioxidant transcription factor Nrf2, in synergy with CDT, amplifies the oxidative killing effect, leading to tumor suppression of up to 78%. This study seamlessly integrates adaptable T4 phage vehicles with bio-intelligent plasmids, presenting a promising approach for tumor therapy.


Assuntos
Plasmídeos , Microambiente Tumoral , Animais , Plasmídeos/genética , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/tratamento farmacológico , Modelos Animais de Doenças , Eritropoetina/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Nanopartículas/química , Bacteriófagos/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Linhagem Celular Tumoral
3.
World J Clin Oncol ; 15(3): 375-377, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38576594

RESUMO

Colorectal cancer (CRC) is a form of cancer that is often resistant to chemotherapy, targeted therapy, radiotherapy, and immunotherapy due to its genomic instability and inflammatory tumor microenvironment. Ferroptosis, a type of non-apoptotic cell death, is characterized by the accumulation of iron and the oxidation of lipids. Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells. Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance. Moreover, the gut, responsible for regulating iron absorption and release, could influence CRC susceptibility through iron metabolism modulation. Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management, potentially revolutionizing treatment approaches for therapy-resistant cancers.

4.
Nat Commun ; 14(1): 8241, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086870

RESUMO

The first local mpox outbreak in Guangdong Province, China occurred in June 2023. However, epidemiological data have failed to quickly identify the source and transmission of the outbreak. Here, phylogeny and molecular evolution of 10 monkeypox virus (MPXV) genome sequences from the Guangdong outbreak were characterized, revealing local silent transmissions that may have occurred in Guangdong whose mpox outbreaks suggested a molecular epidemiological correlation with Portugal and several regions of China during the same period. The lineage IIb C.1, which includes all 10 MPXV from Guangdong, shows consistent temporal continuity in both phylogenetic characteristics and unique molecular evolutionary mutation spectrum, reflected in the continuous increase of single nucleotide polymorphisms (SNPs) and shared mutations over time. Compared with the Japan MPXV, the Guangdong MPXV showed higher genomic nucleotide differences and separated 14 shared mutations from the B.1 lineage, comprising 6 non-synonymous mutations in genes linked to host regulation, virus infection, and virus life cycle. The unique mutation spectrum with temporal continuity in IIb C.1, related to apolipoprotein B mRNA-editing catalytic polypeptide-like 3, promotes rapid viral evolution and diversification. The findings contribute to understanding the ongoing mpox outbreak in China and offer insights for developing joint prevention and control strategies.


Assuntos
Monkeypox virus , Mpox , Humanos , Filogenia , Monkeypox virus/genética , Surtos de Doenças , Evolução Molecular
5.
Front Neurosci ; 17: 1357511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282620

RESUMO

[This corrects the article DOI: 10.3389/fnins.2022.1106937.].

6.
J Nanobiotechnology ; 20(1): 416, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109760

RESUMO

BACKGROUND: Drug resistance of pathogens and immunosuppression are the main causes of clinical stagnation of osteomyelitis. The ideal treatment strategy for osteomyelitis is to achieve both efficient antibacterial and bone healing through spatiotemporal modulation of immune microenvironment. METHODS: In this study, a bilayer hydrogel based on genetically engineered polypeptide AC10A and AC10ARGD was prepared by self-assembly. Ag2S QDs@DSPE-mPEG2000-Ce6/Aptamer (AD-Ce6/Apt) was loaded in the top layer AC10A hydrogel (AA) for antibacterial, and bone marrow-derived mesenchymal stem cells (BMSCs) were loaded in the lower layer AC10ARGD hydrogel (MAR) for bone healing. The AD-Ce6/Apt can be released from the AA hydrogel to target S. aureus before bacterial biofilm formation and achieved significant bactericidal effect under irradiation with a 660 nm laser. Moreover, AD-Ce6/Apt can induce M1 type polarization of macrophages to activate the immune system and eliminate residual bacteria. Subsequently, BMSCs released from the MAR hydrogel can differentiate into osteoblasts and promote the formation of an anti-inflammatory microenvironment by regulating the M2 type polarization of macrophages. The bilayer AA-MAR hydrogel possessed good biocompatibility. RESULTS: The in vitro and in vivo results showed that the AA-MAR hydrogel not only realized efficient photodynamic therapy of S. aureus infection, but also promoted the transformation of immune microenvironment to fulfill the different needs of each stage, which ultimately improved bone regeneration and mechanical properties post-surgery. CONCLUSION: This work presents an approach for spatiotemporal modulation of immune microenvironment in the treatment of osteomyelitis.


Assuntos
Hidrogéis , Osteomielite , Antibacterianos/química , Antibacterianos/farmacologia , Dimaprit/análogos & derivados , Humanos , Hidrogéis/química , Osteomielite/tratamento farmacológico , Peptídeos/farmacologia , Staphylococcus aureus
7.
J Colloid Interface Sci ; 621: 77-90, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35452931

RESUMO

Single treatment often faces the problem that it cannot completely eradicate tumor and inhibit the tumor metastasis. In order to overcome this shortcoming, multi-modal tumor treatment has attracted widespread attention. In the present article, based on ascorbyl palmitate (PA) and l-arginine (l-Arg), a multifunctional nanocarrier is designed for synergetic treatment of tumor with photothermal and nitric oxide (NO) gas therapy. Firstly, PA and l-Arg were self-assembled to form novel functional micelles, PL, with high biosafety using electrostatic interaction and hydrogen bonding. The functional micelles could self-catalyze to produce NO at the tumor site. Then, Ag2S quantum dots having fluorescence imaging and photothermal properties were encapsulated to obtain the nanocarrier, A@PL. The results show that A@PL had a hydrated size of around 78 nm and presented good stability within 30 d. Moreover, in vitro studies indicate that it was efficient with regards to NO self-generating capacity, whereas the photothermal conversion efficiency was as high as 34% under near-infrared light irradiation. The cytotoxicity results show that, when the concentration of A@PL was as high as 2 mM, the survival rate of 3 T3 cells was still 78.23%, proving that the probe has good safety characteristics. Fluorescence imaging results show that its maximum enrichment can be achieved at the tumor site after tail vein injection for 3 h, and out of the body after 24 h, indicating good internal circulation. The in vivo studies show that the rate of inhibition of tumor using the nanocarrier was as high as 98%, and almost overcame the problem of tumor recurrence caused by single treatment, thus presenting a significant tumor treatment effect. This new multifunctional nanocarrier with self-catalytic production of NO provides a new idea for the efficient treatment of tumors.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Micelas , Neoplasias/terapia , Óxido Nítrico , Imagem Óptica/métodos , Fototerapia/métodos
8.
Nanotechnology ; 33(15)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34963110

RESUMO

Loading of chemotherapeutic agents into nanoparticles has been demonstrated to be an effective strategy for cancer therapy. However, simultaneous delivery of different functional drugs to tumor sites for chemotherapy still remains challenging. In this study, nanogels formed by an engineered coiled-coil polypeptide PC10A were designed and prepared as a carrier for co-delivery of paclitaxel (PTX) and doxorubicin (DOX) through ultrasonic treatment and electrostatic adsorption. The drug loading content and encapsulation efficiency of PTX and DOX in the PC10A/PTX/DOX nanogels were 5.98 wt%, 70 wt%, and 8.55 wt%, 83 wt%, respectively. Because the polypeptide PC10A was non-toxic and biodegradable, the PC10A/PTX/DOX nanogels exhibited good biocompatibility. Thein vitroandin vivoantitumor experiments showed that the PC10A/PTX/DOX nanogels possessed obviously synergistic therapy effect of tumors and lower side effects compared with free PTX/DOX. Therefore, the PC10A/PTX/DOX nanogels are promising to provide a new strategy for combination therapy of different functional drugs.


Assuntos
Antineoplásicos , Doxorrubicina , Portadores de Fármacos , Nanogéis/química , Paclitaxel , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Quimioterapia Combinada , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Peptídeos/química
9.
Acta Biomater ; 140: 547-560, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923095

RESUMO

A nanoplatform based on Ag2S quantum dots (QDs) and tellurium nanorods (TeNRs) was developed for combined chemo-photothermal therapy guided by H2O2-activated near-infrared (NIR)-II fluorescence imaging. Polypeptide PC10AGRD-modified TeNRs and Ag2S QDs were co-encapsulated in 4T1 cell membrane to prepare a nanoplatform (CCM@AT). Ag2S QDs and TeNRs in the CCM@AT were used as a fluorescence probe and photosensitizer, and a chemotherapeutic prodrug and quenching agent to quench the fluorescence of Ag2S QDs, respectively. After the CCM@AT was specifically targeted to the tumor site, the TeNRs were dissolved by the high concentration of H2O2 at the tumor site to light up the fluorescence of Ag2S QDs for NIR-II fluorescence imaging. In addition, the generated toxic TeO66- molecules decreased ATP production by selective cancer chemotherapy, which is beneficial for photothermal therapy. The elevated temperature due to photothermal therapy in turn promoted the chemical reaction in chemotherapy. In vitro and in vivo toxicity results showed that the CCM@AT possesses high biocompatibility. Compared to single photothermal therapy and chemotherapy, the synergistic chemo-photothermal therapy can effectively suppress the growth of 4T1 tumor. This all-in-one nanoplatform provides a boulevard for the combination therapy of tumors guided by NIR-II fluorescence imaging. STATEMENT OF SIGNIFICANCE: NIR-II fluorescence imaging shows the characteristics of low tissue absorption, reflection, and scattering, which can greatly reduce the influence of autofluorescence in vivo. However, the non-negligible effect of autofluorescence is still observed in fluorescence imaging in vivo. Therefore, there is an urgent need to develop a strategy of controlled release of fluorescence for accurate imaging and tumor therapy. Here, Ag2S quantum dots (QDs) with NIR-II fluorescence emission and good photothermal conversion efficiency are used as a fluorescence probe and photosensitizer, and tellurium nanorods (TeNRs) are used as a chemotherapeutic prodrug and quenching agent to quench the fluorescence of Ag2S QDs. This multiple nanoplatform provides an inspiration for the combination therapy of tumor guided by NIR-II fluorescence imaging.


Assuntos
Nanopartículas , Nanotubos , Pontos Quânticos , Peróxido de Hidrogênio , Nanopartículas/química , Imagem Óptica/métodos , Fototerapia/métodos , Terapia Fototérmica , Pontos Quânticos/química , Telúrio
10.
Front Neurosci ; 16: 1106937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699534

RESUMO

Introduction: Effective classification of lung cancers plays a vital role in lung tumor diagnosis and subsequent treatments. However, classification of benign and malignant lung nodules remains inaccurate. Methods: This study proposes a novel multimodal attention-based 3D convolutional neural network (CNN) which combines computed tomography (CT) imaging features and clinical information to classify benign and malignant nodules. Results: An average diagnostic sensitivity of 96.2% for malignant nodules and an average accuracy of 81.6% for classification of benign and malignant nodules were achieved in our algorithm, exceeding results achieved from traditional ResNet network (sensitivity of 89% and accuracy of 80%) and VGG network (sensitivity of 78% and accuracy of 73.1%). Discussion: The proposed deep learning (DL) model could effectively distinguish benign and malignant nodules with higher precision.

11.
ACS Appl Mater Interfaces ; 13(47): 55780-55789, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787410

RESUMO

Chemodynamic therapy (CDT) is widely explored for tumor-specific therapy by converting endogenous H2O2 to lethal ·OH to destroy cancer cells. However, ·OH scavenging by glutathione (GSH) and insufficient intratumoral H2O2 levels seriously hinder the application of CDT. Herein, we reported the fabrication of copper ion-doped ZIF-8 loaded with gold nanozymes and doxorubicin hydrochloride (DOX) for the chemotherapy and CDT synergistic treatment of tumors with the assistance of tumor microenvironment (TME)-activated fluorescence imaging. The Cu2+-doped ZIF-8 shell was gradually degraded to release DOX and gold nanoclusters responding to the acidic TME. The fluorescence signal of the tumor region was acquired after the quenched fluorescence of the gold nanoclusters by Cu2+ and DOX by aggregation-induced quenching was turned on because of the interaction of GSH with Cu2+ and the release of free DOX. The Cu2+ ions could deplete the GSH via redox reactions and the generated Cu+ could convert internal H2O2 to ·OH for tumor CDT. The chemotherapeutic effect of DOX was strengthened through drug efflux inhibition and drug sensitivity increase due to the consumption of GSH and ·OH burst. Moreover, DOX could raise the level of H2O2 and augment the effect of CDT. In addition, the fluorescent gold nanoclusters not only served as a peroxidase to convert H2O2 to ·OH but also employed as an oxidase to consume GSH, resulting in the amplification of chemotherapy and CDT. This work presents an approach to construct tumor microenvironment-activated theranostic probes without external stimuli and to achieve the tumor elimination through cascade reactions and synergistic treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Imagem Óptica , Nanomedicina Teranóstica , Microambiente Tumoral/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Terapia Fototérmica , Propriedades de Superfície
12.
Biomed Eng Online ; 20(1): 115, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819109

RESUMO

BACKGROUND: Nanomaterials of biomedicine and tissue engineering have been proposed for the treatment of periodontitis in recent years. This study aimed to investigate the effects of gold nanoparticles (AuNPs) combined with human ß-defensin 3 (hBD3) on the repair of the alveolar bones of experimental periodontitis in rats. METHODS: A model of experimental periodontitis was established by ligation of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined with hBD3. Micro-computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay, and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB ligand (RANKL), were used to analyze the samples. RESULTS: Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment with AuNPs combined with hBD3. Levels of TNF-α and IL-6 were decreased markedly compared with the ligation group. H&E and Masson staining showed that AuNPs combined with hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined with hBD3 increased the expression levels of ALP and OPG (related to bone formation) while decreasing the expression levels of TRAP and RANKL (related to bone resorption) expression. CONCLUSIONS: AuNPs combined with hBD3 had a protective effect on the progression of experimental periodontitis in rats and played a certain role in suppressing osteoclastogenesis and alleviating the inflammatory destruction of periodontitis along with the promotion of bone repair.


Assuntos
Perda do Osso Alveolar , Nanopartículas Metálicas , Periodontite , beta-Defensinas , Perda do Osso Alveolar/diagnóstico por imagem , Animais , Ouro , Humanos , Osteoprotegerina , Periodontite/diagnóstico por imagem , Ratos
13.
J Diabetes Investig ; 12(8): 1326-1335, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33300305

RESUMO

AIMS/INTRODUCTION: Periodontal disease, a chronic inflammation induced by bacteria, is closely linked with diabetes mellitus. Many complications associated with diabetes are related to epigenetic changes. However, the exact epigenetic changes whereby diabetes affects periodontal disease remain largely unknown. Thus, we sought to investigate the role of diabetes-dependent epigenetic changes of gingival tissue in the susceptibility to periodontal disease. MATERIALS AND METHODS: We studied the effect of streptozotocin-induced diabetes in minipigs on gingival morphological and epigenetic tissue changes. Accordingly, we randomly divided six minipigs into two groups: streptozotocin-induced diabetes group, n = 3; and non-diabetes healthy control group, n = 3. After 85 days, all animals were killed, and gingival tissue was collected for histology, deoxyribonucleic acid methylation analysis and immunohistochemistry. RESULTS: A diabetes mellitus model was successfully created, as evidenced by significantly increased blood glucose levels, reduction of pancreatic insulin-producing ß-cells and histopathological changes in the kidneys. The gingival tissues in the diabetes group presented acanthosis of both gingival squamous epithelium and sulcular/junctional epithelium, and a significant reduction in the number and length of rete pegs. Deoxyribonucleic acid methylation analysis showed a total of 1,163 affected genes, of which 599 and 564 were significantly hypermethylated and hypomethylated, respectively. Immunohistochemistry staining showed that the hypomethylated genes - tumor necrosis factor-α and interleukin-6 - were positively expressed under the junctional epithelium area in the diabetes group. CONCLUSIONS: Diabetes mellitus induces morphological and epigenetic changes in periodontal tissue, which might contribute to the increased susceptibility of periodontal diseases in patients with diabetes.


Assuntos
Complicações do Diabetes/genética , Diabetes Mellitus Experimental/genética , Epigênese Genética , Periodontite/etiologia , Periodontite/genética , Animais , Glicemia/análise , Metilação de DNA , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Gengiva/patologia , Imuno-Histoquímica , Interleucina-6/metabolismo , Masculino , Periodontite/patologia , Suínos , Porco Miniatura , Fator de Necrose Tumoral alfa/metabolismo
14.
J Clin Microbiol ; 51(2): 429-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175255

RESUMO

Long-term infection with high-risk human papillomavirus (HPV) is the leading cause of cervical cancer, while infection with low-risk HPV is the major reason for condylomata acuminata. An accurate, rapid, and convenient assay that is able to simultaneously detect, genotype, and quantify HPV would be of great clinical value yet remains to be achieved. We developed a three-color real-time PCR assay that is able to analyze 30 predominant HPV types in three reactions. The amplification curves indicated the presence of HPV, melting curve analysis identified the HPV genotype, and the quantification cycle value determined the quantity. We applied this assay to 647 cervical swab samples, and the results were compared with those obtained with a commercial genotyping system. The proposed assay had a limit of detection of 5 to 50 copies per reaction and a dynamic range of 5 × 10(1) to 5 × 10(6) copies per reaction. A comparison study showed that the overall sample concordance with the comparison method was 91.6% and the type agreement was greater than 98.7%. The quantification study demonstrated that the loads of HPV type 16 in 30 samples with cervical intraepithelial neoplasia grade III (CIN III) lesions were significantly higher than those in samples with CIN I lesions or CIN II lesions, and the results were concordant with those of the comparison method. The increased information content, high throughput, and low cost would facilitate the use of this real-time PCR-based assay in a variety of clinical settings.


Assuntos
Genótipo , Papillomaviridae/classificação , Papillomaviridae/genética , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Reação em Cadeia da Polimerase em Tempo Real , Adulto , Idoso , Colo do Útero/virologia , Feminino , Humanos , Pessoa de Meia-Idade , Papillomaviridae/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Adulto Jovem , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA