Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(30): 38852-38879, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39041365

RESUMO

Biophysical and clinical medical studies have confirmed that biological tissue lesions and trauma are related to the damage of an intrinsic electret (i.e., endogenous electric field), such as wound healing, embryonic development, the occurrence of various diseases, immune regulation, tissue regeneration, and cancer metastasis. As exogenous electrical signals, such as conductivity, piezoelectricity, ferroelectricity, and pyroelectricity, bioelectroactives can regulate the endogenous electric field, thus controlling the function of cells and promoting the repair and regeneration of tissues. Materials, once polarized, can harness their inherent polarized static electric fields to generate an electric field through direct stimulation or indirect interactions facilitated by physical signals, such as friction, ultrasound, or mechanical stimulation. The interaction with the biological microenvironment allows for the regulation and compensation of polarized electric signals in damaged tissue microenvironments, leading to tissue regeneration and repair. The technique shows great promise for applications in the field of tissue regeneration. In this paper, the generation and change of the endogenous electric field and the regulation of exogenous electroactive substances are expounded, and the latest research progress of the electret and its biological effects in the field of tissue repair include bone repair, nerve repair, drug penetration promotion, wound healing, etc. Finally, the opportunities and challenges of electret materials in tissue repair were summarized. Exploring the research and development of new polarized materials and the mechanism of regulating endogenous electric field changes may provide new insights and innovative methods for tissue repair and disease treatment in biological applications.


Assuntos
Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Eletricidade , Engenharia Tecidual
2.
Int J Biol Macromol ; 273(Pt 2): 133191, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880455

RESUMO

Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.


Assuntos
Celulose , Animais , Celulose/química , Celulose/farmacologia , Ratos , Aderências Teciduais/prevenção & controle , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Masculino , Parede Abdominal/cirurgia , Parede Abdominal/patologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Propriedades de Superfície , Hérnia Abdominal/prevenção & controle , Telas Cirúrgicas , Ratos Sprague-Dawley
3.
Mater Today Bio ; 26: 101042, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660473

RESUMO

High oxidative stress and inflammatory cell infiltration are major causes of the persistent bone erosion and difficult tissue regeneration in rheumatoid arthritis (RA). Triptolide (TPL) has become a highly anticipated anti-rheumatic drug due to its excellent immunomodulatory and anti-inflammatory effects. However, the sudden drug accumulation caused by the binding of "stimulus-response" and "drug release" in a general smart delivery system is difficult to meet the shortcoming of extreme toxicity and the demand for long-term administration of TPL. Herein, we developed a dual dynamically cross-linked hydrogel (SPT@TPL), which demonstrated sensitive RA microenvironment regulation and microenvironment modulation-independent TPL release for 30 days. The abundant borate ester/tea polyphenol units in SPT@TPL possessed the capability to respond and regulate high reactive oxygen species (ROS) levels on-demand. Meanwhile, based on its dense dual crosslinked structure as well as the spontaneous healing behavior of numerous intermolecular hydrogen bonds formed after the breakage of borate ester, TPL could remain stable and slowly release under high ROS environments of RA, which dramatically reduced the risk of TPL exerting toxicity while maximized its long-term efficacy. Through the dual effects of ROS regulation and TPL sustained-release, SPT@TPL alleviated oxidative stress and reprogrammed macrophages into M2 phenotype, showing marked inhibition of inflammation and optimal regeneration of articular cartilage in RA rat model. In conclusion, this hydrogel platform with both microenvironment initiative regulation and TPL long-term sustained release provides a potential scheme for rheumatoid arthritis.

4.
Int J Biol Macromol ; 236: 123943, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889621

RESUMO

The disadvantages of mainstream therapies for endometrial injury are difficult to resolve, herein, we suggest an omnibearing improvement strategy by introducing an injectable multifunctional self-assembled dual-crosslinked sodium alginate/recombinant collagen hydrogel. The hydrogel possessed a reversible and dynamic double network based on dynamic covalent bonds and ionic interactions, which also contributed to excellent capability in viscosity and injectability. Moreover, it was also biodegradable with a suitable speed, giving off active ingredients during the degradation process and eventually disappearing completely. In vitro tests exhibited that the hydrogel was biocompatible and able to enhance endometrial stromal cells viability. These features synergistically promoted cell multiplication and maintenance of endometrial hormone homeostasis, which accelerated endometrial matrix regeneration and structural reconstruction after severe injury in vivo. Furthermore, we explored the interrelation between the hydrogel characteristics, endometrial structure, and postoperative uterine recovery, which would benefit deep research on regulation of uterine repair mechanism and optimization of hydrogel materials. The injectable hydrogel could achieve favourable therapeutic efficacy without the need of exogenous hormones or cells, which would be of clinical value in endometrium regeneration.


Assuntos
Alginatos , Hidrogéis , Feminino , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Alginatos/química , Endométrio , Colágeno , Útero
5.
ACS Nano ; 17(7): 6373-6386, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36961738

RESUMO

Magnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through in situ polymerization of dopamine with Fe3O4 (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility. The bone marrow mesenchyml stem cells (BMSCs) were cultured on magnetic composite microcarriers, and a static magnetic field (SMF) was applied. The results showed that BMSCs adhered to the microcarriers proliferated under the action of horizontal and vertical forces. Magnetic composite microcarriers loaded with BMSCs were implanted into the SD rat model of cartilage defect, and a magnet was added to the operative side. After 12 weeks, cartilage regeneration was observed. The results of gross observation and histological immunostaining 1 month, 2 months, and 3 mounths after operation showed that the magnetic composite microcarriers of loaded cells promoted the early maturation of cartilage and collagen secretion, and the effect of cartilage repair was significantly better than that of the control group. Gait analysis showed that implanting magnetic composite microcarriers loaded with stem cells can reduce postoperative pain and promote limb recovery in SD rats. In conclusion, this study suggests that magnetic composite microcarriers are promising tissue-engineered scaffolds for cartilage regeneration and repair.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Ratos , Animais , Ratos Sprague-Dawley , Alicerces Teciduais , Engenharia Tecidual/métodos , Proliferação de Células , Fenômenos Magnéticos , Células Cultivadas
6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 1-14, 2023 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36935172

RESUMO

OBJECTIVES: Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms. METHODS: Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions. RESULTS: Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1ß, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1ß, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05). CONCLUSIONS: Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.


Assuntos
Dermatite Alérgica de Contato , Dermatite Atópica , Animais , Camundongos , Dinitroclorobenzeno/toxicidade , Dinitroclorobenzeno/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/metabolismo , Dermatite Alérgica de Contato/patologia , Dermatite Atópica/induzido quimicamente , Transdução de Sinais , RNA Mensageiro/metabolismo , Camundongos Endogâmicos BALB C
7.
Exp Dermatol ; 32(2): 135-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36251463

RESUMO

Psoriasis is a chronic recurrent inflammatory skin disease that is characterized by abnormal proliferation and differentiation of keratinocytes (KCs), angiogenesis and skin inflammation. Transfer RNA fragments (tRFs) are tRNA-derived small RNAs (tsRNAs), which possess regulatory functions in many diseases. Their potential roles in the pathological development of psoriasis have not been established. We first identified differentially expressed (DE) tRFs from psoriatic skin lesions using small RNA sequencing, and collected additional clinical samples for validation. Then, we investigated the function and mechanism of target tRFs in vitro. As a result of our investigation: we identified 234 DE transcripts in psoriatic skin lesions compared with normal controls. Further functional analysis showed the downregulation of tRF-Ile-AAT-019 in psoriatic lesions plays a critical role in pathogenesis since it could target 3'UTR of the serine protease serpin protein E1 (SERPINE1) gene. We next demonstrated that tRF-Ile-AAT-019 could suppress SERPINE1, thus leading to decreased expressions of vascular endothelial growth factor but increased expressions of keratinocytes (KCs) differentiation markers including Keratin1 and Involucrin. In conclusion, tRF-Ile-AAT-019 plays a protective role in the pathological progression of psoriasis via targeting SERPINE1, resulting in regulation of KCs differentiation and vascular proliferation biomarkers and providing a potential novel targeting pathway for the disease treatment.


Assuntos
Psoríase , RNA , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Regulação para Baixo
8.
Stem Cell Res Ther ; 13(1): 463, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068613

RESUMO

BACKGROUND: Urethral stricture and reconstruction are one of the thorny difficult problems in the field of urology. The continuous development of tissue engineering and biomaterials has given new therapeutic thinking to this problem. Bacterial cellulose (BC) is an excellent biomaterial due to its accessibility and strong plasticity. Moreover, adipose-derived stem cells (ADSCs) could enhance their wound healing ability through directional modification. METHODS: First, we used physical drilling and sulfonation in this study to make BC more conducive to cell attachment and degradation. We tested the relevant mechanical properties of these materials. After that, we attached Fibroblast Growth Factor Receptor 2 (FGFR2)-modified ADSCs to the material to construct a urethra for tissue engineering. Afterward, we verified this finding in the male New Zealand rabbit model and carried out immunohistochemical and imaging examinations 1 and 3 months after the operation. At the same time, we detected the potential biological function of FGFR2 by bioinformatics and a cytokine chip. RESULTS: The results show that the composite has excellent repairability and that this ability is correlated with angiogenesis. The new composite in this study provides new insight and therapeutic methods for urethral reconstruction. The preliminary mechanism showed that FGFR2 could promote angiogenesis and tissue repair by promoting the secretion of Vascular Endothelial Growth Factor A (VEGFA) from ADSCs. CONCLUSIONS: Double-modified sulfonated bacterial cellulose scaffolds combined with FGFR2-modified ADSCs provide new sight and treatments for patients with urethral strictures.


Assuntos
Uretra , Fator A de Crescimento do Endotélio Vascular , Tecido Adiposo/metabolismo , Animais , Materiais Biocompatíveis , Celulose , Masculino , Coelhos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Células-Tronco/metabolismo , Sulfatos/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Bioact Mater ; 6(11): 3987-3998, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33997488

RESUMO

Cell transplantation is an effective strategy to improve the repair effect of nerve guide conduits (NGCs). However, problems such as low loading efficiency and cell anoikis undermine the outcomes. Microcarriers are efficient 3D cell culture scaffolds, which can also prevent cell anoikis by providing substrate for adhesion during transplantation. Here, we demonstrate for the first time microcarrier-based cell transplantation in peripheral nerve repair. We first prepared macroporous chitosan microcarriers (CSMCs) by the emulsion-phase separation method, and then decorated the CSMCs with polylysine (pl-CSMCs) to improve cell affinity. We then loaded the pl-CSMCs with adipose-derived stem cells (ADSCs) and injected them into electrospun polycaprolactone/chitosan NGCs to repair rat sciatic nerve defects. The ADSCs-laden pl-CSMCs effectively improved nerve regeneration as demonstrated by evaluation of histology, motor function recovery, electrophysiology, and gastrocnemius recovery. With efficient cell transplantation, convenient operation, and the multiple merits of ADSCs, the ADSCs-laden pl-CSMCs hold good potential in peripheral nerve repair.

10.
Nanomedicine (Lond) ; 15(4): 337-353, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31950875

RESUMO

Aim: Previously, different results have been achieved regarding effects of silver nanoparticles (Ag NPs) on osteogenesis of stem cells and the mechanisms have not been disclosed yet, which are quite important for potential application of Ag NPs in bone reconstruction. Materials & methods: Effects of Ag NPs on osteogenesis of human mesenchymal stem cells (hMSCs) with underlying mechanisms were investigated. Results: Ag NPs at 2.5 and 5 µg/ml increased osteogenic proteins expression and mineralization of hMSCs. Meanwhile, autophagy was activated by Ag NPs and it could be inhibited by 3-methyladenine. Furthermore, osteogenesis induced by Ag NPs could also be reversed by 3-methyladenine. Conclusion: These findings suggest that autophagy is involved in stimulating osteogenesis of hMSCs induced by Ag NPs.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Prata/farmacologia
11.
Mater Sci Eng C Mater Biol Appl ; 104: 109944, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31500058

RESUMO

Anti-relapse therapy after surgery plays a critical role in cancer therapy. New strategies maximizing the delivery of drugs to tumor cells while reducing toxic side effects on normal tissues and organs are still urgently required. In order to solve the problems of the poor delivery and inadequate distribution of cytotoxic chemotherapeutic drugs in the clinical application, an ultrasound-controllable and implantable release-system that utilized waterborne polyurethane (WPU) and chitosan (CS) composite membrane as drug carrier with wide flexible loading capacity for doxorubicin (DOX) was described in present work. Benefiting from the hydrophilic segment in WPU and bioactivity of amino groups on side chains of CS, the resulting composite films exhibited fine biodegradability, favorable cytocompatibility and excellent blood compatibility. The in vitro release studies illustrated that the drug-loading membranes displayed a well sustained release effect manifested in slow release, stability and no sudden release, and the DOX was able to release in an ultrasound-controlled manner. Cellular uptake assay and CCK 8 assay showed that the DOX can be released efficiently from the drug-loading matrix and taken up by tumor cells. As a means of adjuvant local treatment, this work provided a facile approach to the design of ultrasound-regulated membrane matrix that is highly beneficial not only due to the higher and long-term therapeutic efficiency, and improvement of utilization efficiency of chemotherapeutic drugs but also the low toxicity to normal cells.


Assuntos
Antineoplásicos/química , Quitosana/química , Poliuretanos/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Membranas/química , Camundongos , Nanopartículas/química , Ondas Ultrassônicas
12.
Mater Sci Eng C Mater Biol Appl ; 93: 853-863, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274121

RESUMO

Electro-responsive Graphene oxide-poly(acrylic acid) (GO-PAA) nanocomposite hydrogels with different concentrations of GO were successfully fabricated via in situ polymerization. The covalently crosslinked PAA network is intertwined with GO sheets by the bridging of hydrogen-bond interactions thus resulting in an integrated and stable hydrogel network. The swelling, mechanical and conductivity properties of the hydrogel are impacted as a result. The influences of different factors on the electro-response behavior of the hydrogels were deeply explored. Because of electrostatic double layer of the GO, the response properties of hydrogels in different voltage, pH, and ionic strength improved significantly. Meanwhile, with the addition of GO, the response performance of hydrogel in biological applications was greatly expanded. Furthermore, GO-PAA hydrogel shows a good compatibility with bone marrow-derived mesenchymal stem cells (BMSCs). The electro-mechanical coupling of the hydrogel can change the morphology of the adhesive cells, and regulate the cytoskeleton of the cell under the condition of electrical stimulation, which can further promote the differentiation of neural stem cells. This electro-responsive hydrogel could be widely used in many fields of biomedical application such as artificial muscle and tissue engineering scaffold.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Condutividade Elétrica , Grafite/química , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Animais , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Ratos
13.
Biomaterials ; 171: 118-132, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684676

RESUMO

Cartilage has rather limited capacities for self-repair and regeneration. To repair complexly shaped cartilage tissue defects, we propose the application of microtissues fabricated from bone marrow-derived mesenchymal stem cells (BMSCs) cultured in natural bionic nanofibrous microcarriers (NF-MCs). The NF-MCs were structurally and functionally designed to mimic natural extracellular matrix (ECM) by crosslinking dialdehyde bacterial cellulose (DBC) with DL-allo-hydroxylysine (DHYL) and complexing chitosan (CS) with DHYL through electrostatic interactions. The orthogonal design allows for fine tuning of fiber diameter, pore size, porosity, mechanical properties, and biodegradation rate of the NF-MC. BMSCs cultured in NF-MCs showed improved proliferation compared with those cultured in chitosan microcarriers (CS-MCs). After three-week culture under microgravity conditions, functional cartilage microtissues were generated. When implanted into a knee articular cartilage defect in mice, the microtissue showed superior in vivo cartilage repair as characterized by cell tracking, histology, micro CT image, and gait analysis. Versatile in natural biopolymer design and biomimetic in nanofibrous component embedded in macroporous microcarriers, these injectable NC-MCs demonstrate to be effective carriers for cell proliferation and differentiation. Furthermore, the functional microtissues also show their prospect in repair of cartilage tissue, and suggest their potential for other tissues in general.


Assuntos
Materiais Biomiméticos/química , Cartilagem Articular/fisiologia , Matriz Extracelular/química , Microtecnologia/métodos , Nanofibras/química , Regeneração , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Celulose/química , Celulose/farmacologia , Celulose/ultraestrutura , Modelos Animais de Doenças , Fêmur/patologia , Marcha , Proteínas de Fluorescência Verde/metabolismo , Hidroxilisina/química , Imageamento Tridimensional , Células-Tronco Mesenquimais/citologia , Ratos Sprague-Dawley , Microtomografia por Raio-X
14.
Phytomedicine ; 22(4): 431-7, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25925964

RESUMO

Tumor necrosis factor alpha (TNF-α) promotes the expression of adhesion molecules and induces endothelial dysfunction, a process that can lead to atherosclerosis. Green tea consumption can inhibit endothelial dysfunction and attenuate the development of arteriosclerosis. The purpose of this study was to examine whether epigallocatechin-3-gallate (EGCG) prevents TNF-α-dependent endothelial dysfunction. Here, we compared the regulatory effects of the green tea components EGCG and L-theanine against TNF-α-induced stimulation of adhesion molecule expression and apoptosis induction, which is associated with autophagy. Monocytic cell adhesion to human endothelial cells was measured using a fluorescently-labeled cell line, U-937. Caspase 3/7 activity was examined with a fluorescent probe and fluorescence microscopy. In addition, we analyzed the expression of several genes by RT-PCR. TNF-α-modulation of LC3 and VCAM1 protein levels were investigated by Western blot (WB). TNF-α induced adhesion of U937 cells to endothelial cells, and gene expression associated with adhesion molecules and apoptosis. On the other hand, EGCG and L-theanine inhibited TNF-α-induced adhesion of U937 cells to endothelial cells and inhibited increases in ICAM1, CCL2 and VCAM1 expression. Furthermore, EGCG and L-theanine inhibited TNF-α-induced apoptosis-related gene expression (e.g., CASP9), and caspase activity while inhibiting TNFα-induced VCAM1, LC3A and LC3B protein expression. Meanwhile, treatment of endothelial cells with autophagy inhibitor 3-methyladenine (3-MA) blocked EGCG-induced expression of CASP9. Together, these results indicate that EGCG can modulate TNF-α-induced monocytic cell adhesion, apoptosis and autophagy. We thus conclude that EGCG might be beneficial for inhibiting TNF-α-mediated human endothelial disorders by affecting LC3 expression-related processes.


Assuntos
Apoptose , Catequina/análogos & derivados , Células Endoteliais/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Caspases/metabolismo , Catequina/farmacologia , Adesão Celular , Linhagem Celular , Quimiocina CCL2/metabolismo , Glutamatos/farmacologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
15.
J Environ Sci (China) ; 19(12): 1461-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18277650

RESUMO

Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and field emission scanning electron microscope (FE-SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.


Assuntos
Reatores Biológicos , Polipropilenos/química , Polissorbatos/química , Tensoativos/química , Adsorção , Filtração , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA