Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 48(12): 1218-1226, 2023 Dec 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38146244

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture(EA) on memory, cognitive impairment, and the brain-derived neurotrophic factor(BDNF)/N-methyl-D-aspartate receptor subtype 1(NMDAR1) pathway in the brains of offspring rat with intrauterine growth restriction(IUGR) induced by perinatal nicotine exposure(PNE), so as to explore the underlying mechanism. METHODS: SD rats were randomly divided into normal, model, and EA groups, with 4 mothers and 10 offspring rats of each mother in each group. The IUGR model was established by subcutaneous injection of nicotine during pregnancy and lactation. From the 6th day of pregnancy in the mothers until the 21st day after birth of the offspring rats, EA (2 Hz/15 Hz, 1 mA) was administered bilaterally at the "Zusanli"(ST36) of mothers, once daily for 20 min. The brain organ coefficient was used to evaluate the brain development of the offspring rats. The Y-maze test and novel object recognition experiments were performed to assess memory and cognitive function. HE staining was used to observe the development and cellular morphology of the hippocampus and prefrontal cortex in the offspring rats. UV spectrophotometry was used to measure the glutamate(Glu) content in the hippocampus. ELISA was used to detect the BDNF content in the hippocampus. Western blot was performed to measure the protein expression of NMDAR1 in the hippocampus. Immunohistochemistry was used to count the number of BDNF-positive cells in the hippocampus and prefrontal cortex. RESULTS: Compared with the normal group, the brain organ coefficient, exploration time of the novel arm, spontaneous alternation rate, and novel object recognition index, contents of BDNF and expression of NMDAR1 proteins in the hippocampus, the number of BDNF-positive cells in the CA1 and CA3 regions of the hippocampus and prefrontal cortex were significantly reduced(P<0.01), while the Glu content in the hippocampus was significantly increased(P<0.01) in the model group of offspring rats;decreased cell number, scattered arrangement, and disrupted cellular structure were observed in the hippocampus and prefrontal cortex of offspring rats in the model group. Compared with the model group, the brain organ coefficient, exploration time of the novel arm, spontaneous alternation rate, and novel object recognition index, the BDNF contents and NMDAR1 protein expression in the hippocampus, the number of BDNF-positive cells in the hippocampal CA1 and CA3 regions and prefrontal cortex significantly increased(P<0.01, P<0.05), while the Glu content in the hippocampus was significantly decreased (P<0.01) in offspring rats of the EA group;increased cell number, neat arrangement, and reduced cellular damage were observed in the hippocampus and prefrontal cortex in the EA group. CONCLUSIONS: EA has an improving effect on memory and cognitive function impairment in offspring rats with IUGR induced by PNE, and this mechanism may be associated with the regulation of BDNF/NMDAR1 pathway, thereby improving the neuronal quantity and structure of the hippocampus and prefrontal cortex in offspring rats.


Assuntos
Disfunção Cognitiva , Eletroacupuntura , Gravidez , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Nicotina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Ácido Glutâmico/metabolismo
2.
Biomed Pharmacother ; 168: 115824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925937

RESUMO

OBJECTIVE: Many factors during pregnancy can induce intrauterine growth restriction (IUGR), resulting in various adverse perinatal outcomes such as low birth weight and multiple organ disorders. Among these factors, prenatal smoke/nicotine exposure is a common cause of IUGR, often associated with altered fetal lung development. The classical Wnt signaling pathway plays a vital role in lung development, and its alterations are commonly associated with developmental lung pathologies. The purpose of this study was to determine whether electroacupuncture (EA) at "Zusanli" (ST 36) points protects perinatal nicotine exposure (PNE)-induced offspring lung dysplasia through Wnt/ß-catenin signaling pathway and to identify specific Wnt signaling pathway targets of EA. METHODS: Following a well-established protocol, nicotine (1 mg/kg/ body weight) was administered subcutaneously to pregnant Sprague Dawley rat dams from gestational day 6 to postnatal day 21. In the EA group, dams were treated with EA at both ST 36 acupoints, while in another experimental group, Wnt/ß-catenin signaling pathway agonist was injected subcutaneously (2 mg/kg/ body weight). Offspring body weight (PND 1, 7, 14, and 21), lung weight, Wnt signaling markers, pulmonary function, and lung morphology were determined at sacrifice on PND 21. Specifically, Western blotting and Real-time PCR were used to detect the protein and mRNA levels of critical Wnt signaling markers Wnt2, Wnt7b, FZD4, FZD7, LRP5, and LRP6 in the offspring lung. The protein levels of ß-catenin in lung tissue of offspring rats were detected by ELISA that of LEF-1 by Western blotting. RESULTS: Compared to the control group, the body and lung weights of the offspring rats were significantly decreased in the nicotine-only exposed group. The pulmonary function determined as FVC, PEF, TV, and Cdyn was also significantly decreased, while PIF was significantly increased. The protein levels and mRNA expression of Wnt2, Wnt7b, FZD4, FZD7, LRP5, and LRP6 in the lung tissue of the PNE offspring rats were significantly increased. With EA administration at ST 36 acupoints concomitant with nicotine administration, the body and lung weights, pulmonary function (FVC, PEF, PIF, TV, and Cdyn), protein and mRNA levels Wnt signaling pathway markers (Wnt2, Wnt7b, FZD4, FZD7, LRP5, LRP6, ß-catenin, and LEF-1) normalized and were not different from the control group. Notably, Wnt agonists agonist administration blocked the protective effects of EA against PNE-induced lung morphological, molecular, and function changes, highlighting the central significance of Wnt pathway signaling in PNE-induced offspring pulmonary pathology and its modulation by EA at ST 36 acupoints. CONCLUSION: Concomitant maternal EA at ST 36 acupoints from gestational day 6 to PND 21 protects against offspring PNE-induced lung phenotype. The protective effect is achieved by regulating the expression of Wnt ligand proteins (Wnt2 and Wnt7b) and receptor proteins (FZD4, FZD7, LRP5, and LRP6) upstream of the Wnt/ß-catenin signaling pathway intermediates ß-catenin, and LEF-1.


Assuntos
Eletroacupuntura , Nicotina , Gravidez , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Via de Sinalização Wnt , beta Catenina/metabolismo , Pulmão , Proteínas Wnt/metabolismo , RNA Mensageiro/metabolismo , Peso Corporal
3.
Pediatr Pulmonol ; 56(8): 2537-2545, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34033703

RESUMO

Maternal food restriction (MFR) during pregnancy leads to pulmonary dysplasia in the newborn period and increases susceptibility to diseases, such as asthma and chronic lung disease, later in life. Previous studies have shown that maternal electro-acupuncture (EA) applied to "Zusanli" (ST 36) could prevent the abnormal expression of key lung developmental signaling pathways and improve the lung morphology and function in perinatal nicotine exposed offspring. There is a significant overlap in lung developmental signaling pathways affected by perinatal nicotine exposure and MFR during pregnancy; however, whether maternal EA at ST 36 also blocks the MFR-induced lung phenotype is unknown. Here, we examined the effects of EA applied to maternal ST 36 on lung morphology and function and the expression of key lung developmental signaling pathways, and the hypercorticoid state associated with MFR during pregnancy. These effects were compared with those of metyrapone, an intervention known to block MFR-induced offspring hypercorticoid state and the resultant pulmonary pathology. Like metyrapone, maternal EA at ST 36 blocked the MFR-induced changes in key developmental signaling pathways and protected the MFR-induced changes in lung morphology and function. These results offer a novel and safe, nonpharmacologic approach to prevent MFR-induced pulmonary dysplasia in offspring.


Assuntos
Terapia por Acupuntura , Eletroacupuntura , Animais , Feminino , Pulmão , Fenótipo , Gravidez , Ratos , Ratos Sprague-Dawley
4.
Zhongguo Zhen Jiu ; 41(4): 405-10, 2021 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-33909362

RESUMO

OBJECTIVE: To investigate the protective effect of electroacupuncture (EA) at "Zusanli" (ST 36) in pregnant rats on lung dysplasia of newborn rats with intrauterine growth restriction (IUGR) induced by maternal food restriction. METHODS: Twenty-four female SD rats were randomly divided into a control group, a control+EA group, a model group and a model+EA group, 6 rats in each group. From the 10th day into pregnancy to the time of delivery, the rats in the model group and the model+EA group were given with 50% dietary restriction to prepare IUGR model. From the 10th day into pregnancy to the time of delivery, the rats in the control+EA group and the model+EA group were treated with EA at bilateral "Zusanli" (ST 36), once a day. The body weight of offspring rats was measured at birth, and the body weight and lung weight of offspring rats were measured on the 21st day after birth. The lung function was measured by small animal lung function detection system; the lung tissue morphology was observed by HE staining; the content of peroxisome proliferator activated receptor γ (PPARγ) in lung tissue was detected by ELISA. RESULTS: Compared with the control group, the body weight at birth as well as the body weight, lung weight, lung dynamic compliance (Cdyn) and PPARγ at 21 days after birth in the model group were significantly decreased (P<0.01), and the peak inspiratory flow (PIF) and inspiratory resistance (RI) were significantly increased (P<0.01); the number of alveoli was significantly decreased, and the alveolar area and alveolar septal thickness were significantly increased, and some alveoli were ruptured and fused. Compared with the model group, the body weight at birth as well as the body weight, lung weight, Cdyn and PPARγ at 21 days after birth in the model+EA group were significantly increased (P<0.01, P<0.05), and the PIF and RI were significantly reduced (P<0.05); the number of alveoli was significantly increased, and the alveolar area and alveolar septal thickness were significantly reduced, and the rupture and fusion of alveolar was improved. CONCLUSION: EA at "Zusanli" (ST 36) may protect the lung function and lung histomorphology changes by regulating the level of PPARγ of lung in IUGR rats induced by maternal food restriction.


Assuntos
Eletroacupuntura , Pontos de Acupuntura , Animais , Feminino , Retardo do Crescimento Fetal/terapia , Pulmão , Gravidez , Ratos , Ratos Sprague-Dawley
5.
Biomed Res Int ; 2020: 8030972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190681

RESUMO

Introduction. Environmental exposure of the developing offspring to cigarette smoke or nicotine is an important predisposing factor for many chronic respiratory conditions, such as asthma, emphysema, pulmonary fibrosis, and so forth, in the exposed offspring. Studies showed that electroacupuncture (EA) applied to maternal "Zusanli" (ST36) acupoints during pregnancy and lactation protects against perinatal nicotine exposure- (PNE-) induced lung damage. However, the most effective time period, that is, prenatal vs. postnatal, to attain this effect has not been determined. OBJECTIVE: To determine the most effective developmental timing of EA's protective effect against PNE-induced lung phenotype in the exposed offspring. METHODS: Pregnant rats were given (1) saline ("S" group); (2) nicotine ("N" group); (3) nicotine + EA, exclusively prenatally ("Pre-EA" group); (4) nicotine + EA, exclusively postnatally ("Post-EA," group); and (5) nicotine + EA, administered both prenatally and postnatally ("Pre- and Post-EA" group). Nicotine was injected once daily (1 mg/kg, 100 µl) and EA was administered to bilateral ST36 acupoints once daily during the specified time-periods. At the end of the experimental periods, key hypothalamic pituitary adrenal (HPA) axis markers in pups and dams, and lung function, morphometry, and the central molecular markers of lung development in the offspring were determined. RESULTS: After nicotine exposure, alveolar mean linear intercept (MLI) increased, but mean alveolar number (MAN) decreased and lung PPARγ level decreased, but glucocorticoid receptor (GR) and serum corticosterone (Cort) levels increased, in line with the known PNE-induced lung phenotype. In the nicotine exposed group, maternal hypothalamic corticotropin releasing hormone (CRH) level decreased, but pituitary adrenocorticotropic hormone (ACTH) and serum Cort levels increased. In the "Pre- and Post-EA" groups, PNE-induced alterations in lung morphometry, lung development markers, and HPA axis were blocked. In the "Pre-EA" group, PNE-induced changes in lung morphometry, GR, and maternal HPA axis improved; lung PPARγ level decreased, but glucocorticoid receptor (GR) and serum corticosterone (Cort) levels increased, in line with the known PNE-induced lung phenotype. In the nicotine exposed group, maternal hypothalamic corticotropin releasing hormone (CRH) level decreased, but pituitary adrenocorticotropic hormone (ACTH) and serum Cort levels increased. In the "Pre- and Post-EA" groups, PNE-induced alterations in lung morphometry, lung development markers, and HPA axis were blocked. In the "Pre-EA" group, PNE-induced changes in lung morphometry, GR, and maternal HPA axis improved; lung PPAR. CONCLUSIONS: Maternal EA applied to ST36 acupoints during both pre- and postnatal periods preserves offspring lung structure and function despite perinatal exposure to nicotine. EA applied during the "prenatal period" affords only limited benefits, whereas EA applied during the "postnatal period" is ineffective, suggesting that the EA's effects in modulating PNE-induced lung phenotype are limited to specific time-periods during lung development.


Assuntos
Eletroacupuntura , Nicotina/efeitos adversos , Pontos de Acupuntura , Hormônio Adrenocorticotrópico/metabolismo , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Parto , Fenótipo , Sistema Hipófise-Suprarrenal/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Organismos Livres de Patógenos Específicos
6.
Biomed Res Int ; 2020: 3901528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32090085

RESUMO

BACKGROUND: Maternal smoking and/or exposure to environmental tobacco smoke continue to be significant factors in fetal and childhood morbidity and are a serious public health issue worldwide. Nicotine passes through the placenta easily with minimal biotransformation, entering fetal circulation, where it results in many harmful effects on the developing offspring, especially on the developing respiratory system. OBJECTIVES: Recently, in a rat model, electroacupuncture (EA) at maternal acupoints ST 36 has been shown to block perinatal nicotine-induced pulmonary damage; however, the underlying mechanism and the specificity of ST 36 acupoints for this effect are unknown. Here, we tested the hypothesis that compared with EA at ST 36, EA at LU 5 acupoints, which are on lung-specific meridian, will be equally or more effective in preventing perinatal nicotine-induced pulmonary changes. METHODS: Twenty-four pregnant rat dams were randomly divided into 4 groups: saline ("S"), nicotine ("N"), nicotine + ST 36 (N + ST 36), and nicotine + LU 5 (N + LU 5) groups. Nicotine (1 mg/kg, subcutaneously) and EA (at ST 36 or LU 5 acupoints, bilaterally) were administered from embryonic day 6 to postnatal day 21 once daily. The "S" group was injected saline. As needed, using ELISA, western analysis, q-RT-PCR, lung histopathology, maternal and offspring hypothalamic pituitary adrenal axes, offspring key lung developmental markers, and lung morphometry were determined. RESULTS: With nicotine exposure, alveolar count decreased, but mean linear intercept and septal thickness increased. It also led to a decrease in pulmonary function and PPARγ and an increase of ß-catenin and glucocorticoid receptor expression in lung tissue and corticosterone in the serum of offspring rats. Electroacupuncture at ST 36 normalized all of these changes, whereas EA at LU 5 had no obvious effect. CONCLUSION: Electroacupuncture applied to ST 36 acupoints provided effective protection against perinatal nicotine-induced lung changes, whereas EA applied at LU 5 acupoints was ineffective, suggesting mechanistic specificity and HPA axis' involvement in mediating EA at ST 36 acupoints' effects in mitigating perinatal nicotine-induced pulmonary phenotype. This opens the possibility that other acupoints, besides ST 36, can have similar or even more robust beneficial effects on the developing lung against the harmful effect of perinatal nicotine exposure. The approach proposed by us is simple, cheap, quick, easy to administer, and is devoid of any significant side effects.


Assuntos
Pontos de Acupuntura , Eletroacupuntura , Sistema Hipotálamo-Hipofisário/patologia , Pulmão/patologia , Nicotina/administração & dosagem , Sistema Hipófise-Suprarrenal/patologia , Efeitos Tardios da Exposição Pré-Natal/terapia , Animais , Feminino , Pulmão/fisiopatologia , PPAR gama/genética , PPAR gama/metabolismo , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos Sprague-Dawley , Testes de Função Respiratória , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA