Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Mol Med ; 21(7): 539-548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33272176

RESUMO

Male fertility is closely related to the normal function of the hypothalamicpituitary- testicular axis. The testis is an important male reproductive organ that secretes androgen and produces sperm through spermatogenesis. Spermatogenesis refers to the process by which spermatogonial stem cells (SSCs) produce highly differentiated spermatozoa and is divided into three stages: mitosis, meiosis and spermiogenesis. Spermatogenesis requires SSCs to strike a proper balance between self-renewal and differentiation and the commitment of spermatocytes to meiosis, which involves many molecules and signalling pathways. Abnormal gene expression or signal transduction in the hypothalamus and pituitary, but particularly in the testis, may lead to spermatogenic disorders and male infertility. The phosphoinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in many stages of male reproduction, including the regulation of the hypothalamus-pituitarygonad (HPG) axis during spermatogenesis, the proliferation and differentiation of spermatogonia and somatic cells, and the regulation of sperm autophagy and testicular endocrine function in the presence of environmental pollutants, particularly endocrinedisrupting chemicals (EDCs). In the PI3K/AKT/mTOR signalling pathway, mTOR is considered the central integrator of several signals, regulating metabolism, cell growth and proliferation. In particular, mTOR plays an important role in the maintenance and differentiation of SSCs, as well as in regulating the redox balance and metabolic activity of Sertoli cells, which play an important role in nutritional support during spermatogenesis.


Assuntos
Fertilidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Espermatogênese , Serina-Treonina Quinases TOR/metabolismo , Humanos , Masculino , Células de Sertoli/metabolismo , Espermatogônias/metabolismo
2.
Clin Chim Acta ; 502: 214-221, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31733195

RESUMO

Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disease characterized by clinical or laboratorial hyperandrogenism, oligo-anovulation and metabolic abnormalities, including insulin resistance, excessive weight or obesity, type II diabetes, dyslipidemia and an increased risk of cardiovascular disease. The most significant clinical manifestation of PCOS is hyperandrogenism. Excess androgen profoundly affects granulosa cell function and follicular development via complex mechanisms that lead to obesity and insulin resistance. Most PCOS patients with hyperandrogenism have steroid secretion defects that result in abnormal folliculogenesis and failed dominant follicle selection. Hyperandrogenism induces obesity, hairy, acne, and androgenetic alopecia. These symptoms can bring great psychological stress to women. Drugs such as combined oral contraceptive pills, metformin, pioglitazone and low-dose spironolactone help improve pregnancy rates by decreasing androgen levels in vivo. Notably, PCOS is heterogeneous, and hyperandrogenism is not the only pathogenic factor. Obesity and insulin resistance aggravate the symptoms of hyperandrogenism, forming a vicious cycle that promotes PCOS development. Although numerous studies have been conducted, the definitive pathogenic mechanisms of PCOS remain uncertain. This review summarizes and discusses previous and recent findings regarding the relationship between hyperandrogenism, insulin resistance, obesity and PCOS.


Assuntos
Hiperandrogenismo/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Síndrome do Ovário Policístico/metabolismo , Androgênios/biossíntese , Feminino , Humanos , Hiperandrogenismo/diagnóstico , Hiperandrogenismo/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Obesidade/diagnóstico , Obesidade/tratamento farmacológico , Pioglitazona/uso terapêutico , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/tratamento farmacológico , Espironolactona/uso terapêutico
3.
Taiwan J Obstet Gynecol ; 58(4): 447-453, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31307731

RESUMO

Polycystic ovary syndrome (PCOS) is widely accepted as the most common endocrine abnormality in women of childbearing age and may be accompanied by dyslipidemia, hyperandrogenism, hyperinsulinemia, oxidative stress and infertility. Dyslipidemia is now known to play an important role in the development of PCOS. Lipid abnormalities, including elevated low-density lipoprotein and triglyceride levels and reduced high-density lipoprotein levels, are often found in women with PCOS and play an important role in PCOS; therefore, we summarize the effect of lipid abnormalities on hyperandrogenism, insulin resistance, oxidative stress and infertility in PCOS and review the effects of common lipid-lowering drugs on patients with PCOS. The purpose of this article is to elucidate the mechanisms of lipid metabolism abnormalities in the development of PCOS.


Assuntos
Dislipidemias/epidemiologia , Hiperandrogenismo/epidemiologia , Hipolipemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Síndrome do Ovário Policístico/epidemiologia , Adulto , Comorbidade , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperandrogenismo/diagnóstico , Pessoa de Meia-Idade , Síndrome do Ovário Policístico/diagnóstico , Prevalência , Prognóstico , Medição de Risco
4.
Int J Oncol ; 53(5): 1827-1835, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30106141

RESUMO

The novel neurite outgrowth inhibitor B (Nogo­B) receptor (NgBR) is specific for Nogo­B, which is highly expressed in various human organs and cells, including the lung, liver, kidney, smooth muscle cells, blood vessel endothelial cells and inflammatory cells. Previous studies have indicated that NgBR directly interacts with Nogo­B and is able to independently influence lipid and cholesterol homeostasis, angiogenesis, N­glycosylation, the epithelial-mesenchymal transition, the chemotaxis of endothelial cells and cellular proliferation and apoptosis. These multiple functions and actions of this receptor provide an understanding of the important roles of NgBR in various conditions, including fatty liver, atherosclerosis, intracranial microaneurysms, retinitis pigmentosa and severe neurological impairment. Furthermore, NgBR has been demonstrated to exert protean, multifunctional and enigmatic effects in cancer. The present review summarizes the latest knowledge on the suppressing and activating effects of NgBR, emphasizing its function in cancer. Further basic and medical research on this receptor may provide novel insight into its clinical implications on the prognosis of relevant human cancer types.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado/metabolismo , Neoplasias/patologia , Neovascularização Patológica/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
5.
DNA Cell Biol ; 36(12): 1142-1150, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058484

RESUMO

Members of the reticulon protein family are predominantly distributed within the endoplasmic reticulum. The neurite outgrowth inhibitor (Nogo) has three subtypes, including Nogo-A (200 kDa), Nogo-B (55 kDa), and Nogo-C (25 kDa). Nogo-A and Nogo-C are potent Nogos that are predominantly expressed in the central nervous system. Nogo-B, the splice variant of reticulon-4, is expressed widely in multiple human organ systems, including the liver, lung, kidney, blood vessels, and inflammatory cells. Moreover, the Nogo-B receptor (NgBR) can interact with Nogo-B and can independently affect nervous system regeneration, the chemotaxis of endothelial cells, proliferation, and apoptosis. In recent years, it has been demonstrated that NgBR plays an important role in human pathophysiological processes, including lipid metabolism, angiogenesis, N-glycosylation, cell apoptosis, chemoresistance in human hepatocellular carcinoma, and epithelial-mesenchymal transition. The pathophysiologic effects of NgBR have garnered increased attention, and the detection and enhancement of NgBR expression may be a novel approach to monitor the development and to improve the prognosis of relevant human clinical diseases.


Assuntos
Metabolismo dos Lipídeos , Proteínas Nogo/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Apoptose , Proteínas de Transporte/metabolismo , Proliferação de Células , Fosfatos de Dolicol/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Fisiológica , Doença de Niemann-Pick Tipo C/metabolismo , Receptores Nogo/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular
6.
Asian Pac J Cancer Prev ; 14(10): 5637-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24289555

RESUMO

The definite molecular mechanisms underlying the genesis of nasopharyngeal carcinomas (NPCs) remain to be completely elucidated. miRNAs are small non-coding RNAs which are implicated in cell proliferation, apoptosis, and even carcinogenesis through negatively regulating gene expression post-transcriptionally. EBV was the first human virus found to express miRNAs. EBV-encoded BART-miRNAs and dysregulated cellular miRNAs are involved in carcinogenesis of NPC by interfering in the expression of viral and host cell genes related to immune responses and perturbing signal pathways of proliferation, apoptosis, invasion, metastasis and even radio-chemo-therapy sensitivity. Additional studies on the roles of EBV-encoded miRNAs and cellular miRNAs will provide new insights concerning the complicated gene regulated network and shed light on novel strategies for the diagnosis, therapy and prognosis of NPC.


Assuntos
Proteínas de Transporte/genética , Herpesvirus Humano 4/genética , MicroRNAs/genética , Neoplasias Nasofaríngeas/genética , Animais , Carcinoma , Humanos , Carcinoma Nasofaríngeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA