Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuron ; 101(6): 1117-1133.e5, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30709655

RESUMO

Neural progenitors with distinct potential to generate progeny are associated with a spatially distinct microenvironment. Neocortical intermediate progenitors (IPs) in the subventricular zone (SVZ) of the developing brain generate neurons for all cortical layers and are essential for cortical expansion. Here, we show that spatial control of IP positioning is essential for neocortical development. We demonstrate that HDAC1 and HDAC2 regulate the spatial positioning of IPs to form the SVZ. Developmental stage-specific depletion of both HDAC1 and HDAC2 in radial glial progenitors results in mispositioning of IPs at the ventricular surface, where they divide and differentiate into neurons, thereby leading to the cortical malformation. We further identified the proneural gene Neurogenin2 as a key target of HDAC1 and HDAC2 for regulating IP positioning. Our results demonstrate the importance of the spatial positioning of neural progenitors in cortical development and reveal a mechanism underlying the establishment of the SVZ microenvironment.


Assuntos
Células Ependimogliais/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Ventrículos Laterais/embriologia , Malformações do Desenvolvimento Cortical/genética , Neocórtex/embriologia , Células-Tronco Neurais/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Malformações do Desenvolvimento Cortical/embriologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese
2.
Toxicol Sci ; 160(2): 268-283, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973681

RESUMO

Lead (Pb) is a toxic heavy metal affecting human health; it is known to be harmful to various organs or systems, yet the mechanisms by which Pb influences immune cell development remain to be defined. In this study, we show that Pb exposure (1250 ppm via drinking water) selectively impacted the development of myeloid cells (myelopoiesis). After Pb treatment of adult C57BL/6 mice, the numbers of granulocyte-macrophage progenitors (GMP) were consistently reduced, whereas the numbers of myeloid cells were increased at week (wk) 1 and decreased at wk8 after initiating the Pb exposure. Functional assays indicate that Pb accelerated GMP differentiation in a reactive oxygen species-dependent manner after treatment for 1 week and inhibited common myeloid progenitor differentiation by upregulating interferon regulatory factor 8 (IRF8) expression after treatment for 8 weeks. Consistent with the distinct Pb influences on myeloid cells observed at wk1 and wk8, Pb caused an inflammatory environment in vivo at wk8, but not at wk1. Furthermore, like the observations in mice during the Pb exposure, bloods from humans occupationally exposed to Pb had their numbers of monocytes, neutrophils and GMP negatively associated with the Pb concentration, whereas IRF8 expression in common myeloid progenitor, but not GMP, was positively correlated with the Pb concentration. These data suggest an occupationally relevant level of Pb exposure preferentially influences myelopoiesis involving reactive oxygen species and IRF8, which may contribute to the current understanding of the hematopoietic toxicology of Pb.


Assuntos
Linhagem da Célula/efeitos dos fármacos , Poluentes Ambientais/efeitos adversos , Células Progenitoras de Granulócitos e Macrófagos/efeitos dos fármacos , Células Progenitoras Mieloides/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Compostos Organometálicos/efeitos adversos , Animais , Células Cultivadas , Técnicas de Cocultura , Poluentes Ambientais/sangue , Feminino , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Células Progenitoras de Granulócitos e Macrófagos/patologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Contagem de Leucócitos , Masculino , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Compostos Organometálicos/sangue , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
EMBO Rep ; 18(9): 1618-1630, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28747490

RESUMO

The Nedd4 family E3 ligases are key regulators of cell growth and proliferation and are often misregulated in human cancers and other diseases. The ligase activities of Nedd4 E3s are tightly controlled via auto-inhibition. However, the molecular mechanism underlying Nedd4 E3 auto-inhibition and activation is poorly understood. Here, we show that the WW domains proceeding the catalytic HECT domain play an inhibitory role by binding directly to HECT in the Nedd4 E3 family member Itch. Our structural and biochemical analyses of Itch reveal that the WW2 domain and a following linker allosterically lock HECT in an inactive state inhibiting E2-E3 transthiolation. Binding of the Ndfip1 adaptor or JNK1-mediated phosphorylation relieves the auto-inhibition of Itch in a WW2-dependent manner. Aberrant activation of Itch leads to migration defects of cortical neurons during development. Our study provides a new mechanism governing the regulation of Itch.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/química , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação Alostérica , Animais , Cristalografia por Raios X , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Domínios WW
4.
Toxicol Appl Pharmacol ; 313: 24-34, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27771405

RESUMO

The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors, the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis.


Assuntos
Cádmio/toxicidade , Células-Tronco Hematopoéticas/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Alendronato/farmacologia , Animais , Carga Corporal (Radioterapia) , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Cádmio/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos
5.
Nat Protoc ; 2(7): 1692-704, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17641634

RESUMO

Transfection of foreign DNA is widely used to study gene function. However, despite the development of numerous methods, the transfer of DNA into postmitotic cells, such as neurons, remains unsatisfactory with regard to either transfection efficiency or cytotoxicity. Nucleofection overcomes these limitations. Direct electroporation of expression plasmids or oligonucleotides into the nucleus ensures both good cell viability and consistently high transfection rates. This allows biochemical analyses of transfected neurons, for example, western blot analyses of protein levels after RNA interference (RNAi) knockdown or microRNA transfection. We provide comprehensive protocols for performing nucleofection with high efficiency on primary neurons. The focus is on the recently developed 96-well shuttle system, which allows the simultaneous testing of up to 96 different plasmids or experimental conditions. Using this system, reproducible high-throughput expression of various transgenes is now feasible on primary neurons, for example large-scale RNAi analyses to downregulate gene expression. The protocol typically takes between 2 and 3 h.


Assuntos
Técnicas Genéticas , Neurônios/fisiologia , Transfecção/métodos , Animais , Biolística , Fosfatos de Cálcio , DNA/genética , Indicadores e Reagentes , Lentivirus , Mamíferos , Mitose , Neurônios/citologia , Interferência de RNA , Retroviridae
6.
J Gen Virol ; 86(Pt 5): 1357-1361, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15831947

RESUMO

One open reading frame (designated vp76) from the White spot syndrome virus (WSSV) genome has the motif of a cytokine I receptor and has been identified as a structural protein. In this paper, vp76 was expressed in Escherichia coli and used to prepare a specific antibody to determine the location of the corresponding protein in the intact virion, the nucleocapsids and the envelope of WSSV. Western blotting with the VP76 antiserum confirmed that VP76 was an envelope protein of WSSV. To investigate the function of the VP76, WSSV was neutralized with the VP76-specific antiserum at different concentrations and injected intramuscularly into crayfish. The mortality curves showed that the VP76 antiserum could partially attenuate infection with WSSV, suggesting that VP76 is an envelope protein involved in WSSV infection.


Assuntos
Astacoidea/virologia , Nucleocapsídeo/química , Proteínas do Envelope Viral/análise , Proteínas do Envelope Viral/fisiologia , Vírus da Síndrome da Mancha Branca 1/química , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Anticorpos Antivirais , Escherichia coli/genética , Escherichia coli/metabolismo , Testes de Neutralização , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/imunologia , Vírion/química , Vírus da Síndrome da Mancha Branca 1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA