Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Orthop Surg ; 16(4): 864-872, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38384169

RESUMO

OBJECTIVE: Knee kinematic asymmetries after anterior cruciate ligament reconstruction (ACLR) are correlated with poor clinical outcomes, such as the progression of knee cartilage degenerations or reinjuries. Fast walking in patients with knee conditions may exacerbate knee kinematic asymmetries, but its impact on ACLR patients is uncertain. The aim of this study is to investigate if fast walking induces more knee kinematic asymmetries in unilateral ACLR patients. METHODS: This cross-sectional study enrolled 55 patients with unilateral ACLR from January 2020 to July 2022. There were 48 males and seven females with an average age of 30.6 ± 6.4 years. Knee kinematic data were collected at three walking speeds: self-selected, fast (150% normal), and slow (50% normal). A 3D knee kinematic analysis system measured the data, and self-reported outcomes assessed comfort levels during walking. We used SPM1D for two-way repeated ANOVA and posthoc paired t-tests to analyze kinematic differences in groups. RESULTS: In fast walking, ACLR knees exhibited more transverse kinematic asymmetries than intact knees, including greater external rotation angle (1.8°, 38%-43%; gait cycle [GC], p < 0.05 & 1.8-2.7°, 50%-61% GC, p < 0.05) and increased proximal tibial translation (2.1-2.5 mm, 2%-6% GC, p < 0.05 & 2.5-3.2 mm, 92%-96% GC, p < 0.05). Additionally, ACLR knees showed greater posterior tibial translation than intact knees (3.6-3.7 mm, 7%-8% GC, p < 0.05) during fast walking. No posterior tibial translation asymmetries were observed in slow walking compared to normal walking levels. ACLR knees have the most comfortable feelings in slow walking speed, and the most uncomfortable feelings in fast walking speed levels (29%). CONCLUSIONS: Fast walking induces additional external tibial rotation and proximal and posterior tibial translation asymmetries in ACLR patients. This raises concerns about long-term safety and health during fast walking. Fast walking, not self-selected speed, is beneficial for identifying postoperative gait asymmetries in ACLR patients.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Adulto , Feminino , Humanos , Masculino , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Estudos Transversais , Marcha , Articulação do Joelho/cirurgia , Caminhada
2.
J Mol Neurosci ; 74(1): 24, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386166

RESUMO

Previous research has found that an adaptive response to ferroptosis involving glutathione peroxidase 4 (GPX4) is triggered after intracerebral hemorrhage. However, little is known about the mechanisms underlying adaptive responses to ferroptosis. To explore the mechanisms underlying adaptive responses to ferroptosis after intracerebral hemorrhage, we used hemin-treated HT22 cells to mimic brain injury after hemorrhagic stroke in vitro to evaluate the antioxidant enzymes and performed bioinformatics analysis based on the mRNA sequencing data. Further, we determined the expression of GSTO2 in hemin-treated hippocampal neurons and in a mouse model of hippocampus-intracerebral hemorrhage (h-ICH) by using Western blot. After hemin treatment, the antioxidant enzymes GPX4, Nrf2, and glutathione (GSH) were upregulated, suggesting that an adaptive response to ferroptosis was triggered. Furthermore, we performed mRNA sequencing to explore the underlying mechanism, and the results showed that 2234 genes were differentially expressed. Among these, ten genes related to ferroptosis (Acsl1, Ftl1, Gclc, Gclm, Hmox1, Map1lc3b, Slc7a11, Slc40a1, Tfrc, and Slc39a14) were altered after hemin treatment. In addition, analysis of the data retrieved from the GO database for the ten targeted genes showed that 20 items on biological processes, 17 items on cellular components, and 19 items on molecular functions were significantly enriched. Based on the GO data, we performed GSEA and found that the glutathione metabolic process was significantly enriched in the hemin phenotype. Notably, the expression of glutathione S-transferase omega (GSTO2), which is involved in glutathione metabolism, was decreased after hemin treatment, and overexpression of Gsto2 decreased lipid reactive oxygen species level in hemin-exposed HT22 cells. In addition, the expression of GSTO2 was also decreased in a mouse model of hippocampus-intracerebral hemorrhage (h-ICH). The decreased expression of GSTO2 in the glutathione metabolic process may be involved in ferroptotic neuronal injury following hemorrhagic stroke.


Assuntos
Glutationa Transferase , Acidente Vascular Cerebral Hemorrágico , Animais , Camundongos , Antioxidantes , Hemorragia Cerebral/genética , Modelos Animais de Doenças , Glutationa , Glutationa Transferase/genética , Hemina/farmacologia , Neurônios , RNA Mensageiro
3.
Spine J ; 23(5): 731-738, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36706921

RESUMO

BACKGROUND CONTEXT: The survival prediction of lung cancer-derived spinal metastases is often underestimated by several scores. The SORG machine learning (ML) algorithm is considered a promising tool to predict the risk of 90-day and 1-year mortality in patients with spinal metastases, but not been externally validated for lung cancer. PURPOSE: This study aimed to externally validate the SORG ML algorithms on lung cancer-derived spinal metastases patients from two large-volume, tertiary medical centers between 2018 and 2021. STUDY DESIGN/SETTING: Retrospective, cohort study. PATIENT SAMPLE: Patients aged 18 years or older at two tertiary medical centers in China are treated surgically for spinal metastasis. OUTCOME MEASURES: Mortality within 90 days of surgery, mortality within 1 year of surgery. METHODS: The baseline characteristics were compared between the development cohort and our validation cohort. Discrimination (receiver operating curve), calibration (calibration plot, intercept, and slope), the overall performance (Brier score), and decision curve analysis was used to assess the overall performance of the SORG ML algorithms. RESULTS: This study included 150 patients with lung cancer-derived spinal metastases from two medical centers in China. Ninety-day and 1-year mortality rates were 12.9% (19/147) and 51.3% (60/117), respectively. Lung Cancer with targeted therapies had the lowest Hazard Ratio (HR=0.490), showing an optimal protecting factor. The AUC of the SORG ML algorithm for 90-day mortality prediction in lung cancer-derived spinal metastases is 0.714. While the AUC for 1-year mortality prediction is 0.832 (95CI%, 0.758-0.906). The algorithm for 1-year mortality was well-calibrated with an intercept of 0.13 and a calibration slope of 1.00. However, the 90-day mortality prediction was underestimated with an intercept of 0.60 and a slope of 0.37. The SORG ML algorithms for 1-year mortality showed a greater net benefit than the "treats all or no patients" strategies. CONCLUSIONS: In the latest cohort of lung cancer-derived spinal metastases in China, the SORG algorithms for predicting 1-year mortality performed well on external validation. However, 90-day mortality was underestimated. The algorithm should be further validated by single primary tumor-derived metastasis treated with the latest comprehensive treatment in diverse populations.


Assuntos
Neoplasias Pulmonares , Neoplasias da Coluna Vertebral , Humanos , Neoplasias da Coluna Vertebral/secundário , Estudos Retrospectivos , Estudos de Coortes , Aprendizado de Máquina , Algoritmos , China/epidemiologia
4.
J Orthop Surg (Hong Kong) ; 30(3): 10225536221125951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36113013

RESUMO

INTRODUCTION: Generalized joint hypermobility (GJH) is a hereditary connective tissue disease in which the range of motion (ROM) of multiple joints exceeds the normal range, and the ROM varies with age, gender, and ethnicity. At present, the six-degree-of-freedom (6-DOF) of ankle kinematics among people with GJH have not been studied. To investigate the kinematic characteristics in the ankle during treadmill gait of university students with generalized joint hypermobility compared to normal participants. We hypothesized that compared to the participants in the control group, those with GJH would exhibit kinematic characteristics of poorer active motion stability in the ankle during treadmill gait. METHODS: Healthy university student volunteers aged 18-24 (excluding those with a history of ankle trauma, etc.) were recruited and divided into a control group (50 volunteers) and a GJH group (Beighton score ≥4, 50 volunteers). Data of the 6-DOF kinematics of ankle was collected using a 3D gait analysis system. Variables were evaluated using independent t-tests and Wilcoxon signed-rank tests. RESULTS: In the proximal/distal parameter, proximal displacement was significantly increased in the GJH group compared with the control group during 4-9% and 96-97% of the gait phase (loading response and terminal swing phase), with an increase of (0.1-0.2 cm, p < .05). Regarding the proximal/distal, internal/external, plantarflexion/dorsiflexion, and anterior/posterior parameters, the participants with GJH exhibited greater ROM than those in the control group throughout the gait cycle (0.24 ± 0.22 cm vs. 0.19 ± 0.15 cm, p = 0.047, 5.56 ± 2.90° vs. 4.48 ± 3.30°, p = .020, 23.05 ± 5.75° vs. 20.36 ± 4.91°, p < .001, 0.65 ± 0.30 cm vs. 0.55 ± 0.27 cm, p = .018). However, ROM of inversion/eversion translation was found to be decreased in the GJH group compared to the control group (8.92 ± 1.59° vs. 9.47 ± 1.37°, p = .009). In addition, there was no statistical difference between the GJH group and the control group in ROM of medial/lateral translation (0.05 ± 0.06 cm vs. 0.04 ± 0.05 cm, p = .131). CONCLUSION: Our results confirm that our hypothesis is not valid. Although there were a few differences in each gait parameter of the ankle between the GJH group and the control group, the difference was not significant. These results indicate that the presence of GJH has less effect on ankle kinematics and enhance our knowledge of the relationship between GJH and 6-DOF of ankle kinematics.


Assuntos
Instabilidade Articular , Tornozelo , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Estudos Transversais , Humanos
5.
J Orthop Surg Res ; 16(1): 425, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217352

RESUMO

BACKGROUND: The Opti_Knee system, a marker-based motion capture system, tracks and analyzes the 6 degrees of freedom (6DOF) motion of the knee joint. However, the validation of the accuracy of this gait system had not been previously reported. The objective of this study was to validate and the system. Two healthy subjects were recruited for the study. METHODS: The 6DOF kinematics of the knee during flexion-extension and level walking cycles of the knee were recorded by Opti_Knee and compared to those from a biplanar fluoroscopy system. The root mean square error (RMSE) of knee kinematics in flexion-extension cycles were compared between the two systems to validate the accuracy at which they detect basic knee motions. The RMSE of kinematics at key events of gait cycles (level walking) were compared to validate the accuracy at which the systems detect functional knee motion. Pearson correlation tests were conducted to assess similarities in knee kinematic trends between the two systems. RESULTS: In flexion-extension cycles, the average translational accuracy (RMSE) was between 2.7 and 3.7 mm and the average rotational accuracy was between 1.7 and 3.8°. The Pearson correlation of coefficients for flexion-extension cycles was between 0.858 and 0.994 for translation and 0.995-0.999 for angles. In gait cycles, the RMSEs of angular knee kinematics were 2.3° for adduction/abduction, 3.2° for internal/external rotation, and 1.4° for flexion/extension. The RMSEs of translational kinematics were 4.2 mm for anterior/posterior translation, 3.3 mm for distal/proximal translation, and 3.2 mm for medial/lateral translation. The Pearson correlation of coefficients values was between 0.964 and 0.999 for angular kinematics and 0.883 and 0.938 for translational kinematics. CONCLUSION: The Opti_Knee gait system exhibited acceptable accuracy and strong correlation strength compared to biplanar fluoroscopy. The Opti _Knee may serve as a promising portable clinical system for dynamic functional assessments of the knee.


Assuntos
Análise da Marcha/instrumentação , Articulação do Joelho/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Correlação de Dados , Fluoroscopia , Análise da Marcha/métodos , Voluntários Saudáveis , Humanos , Masculino , Amplitude de Movimento Articular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA