Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895002

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are common carcinogens. Benzo(a)pyrene is one of the most difficult high-molecular-weight (HMW) PAHs to remove. Biodegradation has become an ideal method to eliminate PAH pollutants from the environment. The existing research is mostly limited to low-molecular-weight PAHs; there is little understanding of HMW PAHs, particularly benzo(a)pyrene. Research into the biodegradation of HMW PAHs contributes to the development of microbial metabolic mechanisms and also provides new systems for environmental treatments. Pseudomonas benzopyrenica BaP3 is a highly efficient benzo(a)pyrene-degrading strain that is isolated from soil samples, but its mechanism of degradation remains unknown. In this study, we aimed to clarify the high degradation efficiency mechanism of BaP3. The genes encoding Rhd1 and Rhd2 in strain BaP3 were characterized, and the results revealed that rhd1 was the critical factor for high degradation efficiency. Molecular docking and enzyme activity determinations confirmed this conclusion. A recombinant strain that could completely mineralize benzo(a)pyrene was also proposed for the first time. We explained the mechanism of the high-efficiency benzo(a)pyrene degradation ability of BaP3 to improve understanding of the degradation mechanism of highly toxic PAHs and to provide new solutions to practical applications via synthetic biology.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Benzo(a)pireno/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Simulação de Acoplamento Molecular , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628812

RESUMO

The newly discovered iron scavenger 7-hydroxytropolone (7-HT) is secreted by Pseudomonas donghuensis HYS. In addition to possessing an iron-chelating ability, 7-HT has various other biological activities. However, 7-HT's biosynthetic pathway remains unclear. This study was the first to report that the phenylacetic acid (PAA) catabolon genes in cluster 2 are involved in the biosynthesis of 7-HT and that two genes, paaZ (orf13) and ech, are synergistically involved in the biosynthesis of 7-HT in P. donghuensis HYS. Firstly, gene knockout and a sole carbon experiment indicated that the genes orf17-21 (paaEDCBA) and orf26 (paaG) were involved in the biosynthesis of 7-HT and participated in the PAA catabolon pathway in P. donghuensis HYS; these genes were arranged in gene cluster 2 in P. donghuensis HYS. Interestingly, ORF13 was a homologous protein of PaaZ, but orf13 (paaZ) was not essential for the biosynthesis of 7-HT in P. donghuensis HYS. A genome-wide BLASTP search, including gene knockout, complemented assays, and site mutation, showed that the gene ech homologous to the ECH domain of orf13 (paaZ) is essential for the biosynthesis of 7-HT. Three key conserved residues of ech (Asp39, His44, and Gly62) were identified in P. donghuensis HYS. Furthermore, orf13 (paaZ) could not complement the role of ech in the production of 7-HT, and the single carbon experiment indicated that paaZ mainly participates in PAA catabolism. Overall, this study reveals a natural association between PAA catabolon and the biosynthesis of 7-HT in P. donghuensis HYS. These two genes have a synergistic effect and different functions: paaZ is mainly involved in the degradation of PAA, while ech is mainly related to the biosynthesis of 7-HT in P. donghuensis HYS. These findings complement our understanding of the mechanism of the biosynthesis of 7-HT in the genus Pseudomonas.


Assuntos
Ferro , Família Multigênica , Animais , Pseudomonas/genética , Carbono , Peixes
3.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674714

RESUMO

7-Hydroxytropolone (7-HT) is a unique iron scavenger synthesized by Pseudomonas donghuensis HYS that has various biological activities in addition to functioning as a siderophore. P. donghuensis HYS is more pathogenic than P. aeruginosa toward Caenorhabditis elegans, an observation that is closely linked to the biosynthesis of 7-HT. The nonfluorescent siderophore (nfs) gene cluster is responsible for the orderly biosynthesis of 7-HT and represents a competitive advantage that contributes to the increased survival of P. donghuensis HYS; however, the regulatory mechanisms of 7-HT biosynthesis remain unclear. This study is the first to propose that the ECF σ factor has a regulatory effect on 7-HT biosynthesis. In total, 20 ECF σ factors were identified through genome-wide scanning, and their responses to extracellular ferrous ions were characterized. We found that SigW was both significantly upregulated under high-iron conditions and repressed by an adjacent anti-σ factor. RNA-Seq results suggest that the SigW/RsiW system is involved in iron metabolism and 7-HT biosynthesis. Combined with the siderophore phenotype, we also found that SigW could inhibit siderophore synthesis, and this inhibition can be relieved by RsiW. EMSA assays proved that SigW, when highly expressed, can directly bind to the promoter region of five operons of the nfs cluster to inhibit the transcription of the corresponding genes and consequently suppress 7-HT biosynthesis. In addition, SigW not only directly negatively regulates structural genes related to 7-HT synthesis but also inhibits the transcription of regulatory proteins, including of the Gac/Rsm cascade system. Taken together, our results highlight that the biosynthesis of 7-HT is negatively regulated by SigW and that the SigW/RsiW system is involved in mechanisms for the regulation of iron homeostasis in P. donghuensis HYS. As a result of this work, we identified a novel mechanism for the global negative regulation of 7-HT biosynthesis, complementing our understanding of the function of ECF σ factors in Pseudomonas.


Assuntos
Ferro , Sideróforos , Ferro/metabolismo , Sideróforos/metabolismo , Proteínas de Bactérias/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
ACS Appl Bio Mater ; 3(2): 977-985, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019299

RESUMO

Autophagy is well-known as a common cellular response to nanomaterials. As one of the most comprehensively studied carbon-based nanomaterials, fullerene and its derivatives have been reported to bring about autophagic features in various cell lines, but little is known about the role of fullerenol (C60(OH)44) on the modulation of autophagy in human gastric tumor cell line SGC-7901. Fullerenol treatment led to the accumulation of autophagosomes, as evidenced by the increased fluorescent intensity of monodansylcadaverine (MDC) staining cells, an elevated level of LC3 protein, and the observation of auotphagosomes in cytoplasm. Subsequent results of the p62 level demonstrated that the accumulation of autophagosomes resulted from the blockade of autophagic flux rather than the activation of autophagy. Fullerenol disrupted autophagic flux by impairing lysosomal function, including lysosome membrane permeabilization (LMP), alkaline of lysosomes, and reduced activity of capthesin B. Interestingly, fullerenol treatment was noncytotoxic under a nutrient-rich condition. When serum was deprived, cytotoxicity occurred in a concentration- and time-dependent manner, along with massive vacuoles in cytoplasm, a large amount of ROS generation, and finally cell death, which can be ascribed to the disruption of essential autophagy in cells. Taken together, understanding this autophagy-lysosome pathway will shed light on the potential anticancer application of fullerenol.

5.
Nano Lett ; 19(10): 7035-7042, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502461

RESUMO

Nanosized oncolytic viral light particles (L-particles), separated from progeny virions, are composed of envelopes and several tegument proteins of viruses, free of nucleocapsids. The noninfectious L-particles experience the same internalization process as mature oncolytic virions, which exhibits great potential to act as targeted therapeutic platforms. However, the clinical applications of L-particle-based theranostic platforms are rare due to the lack of effective methods to transform L-particles into nanovectors. Herein, a convenient and mild strategy has been developed to transform L-particles into near-infrared (NIR) fluorescence Ag2Se quantum dot (QD)-labeled active tumor-targeting nanovectors for real-time in situ imaging and drug delivery. Utilizing the electroporation technique, L-particles can be labeled with ultrasmall water-dispersible NIR fluorescence Ag2Se QDs with a labeling efficiency of ca. 85% and loaded with antitumor drug with a loading efficiency of ca. 87%. Meanwhile, by harnessing the infection mechanism of viruses, viral L-particles are able to recognize and enter tumor cells without further modification. In sum, a trackable and actively tumor-targeted theranostics nanovector can be obtained efficiently and simultaneously. Such multifunctional nanovectors transformed from viral L-particles have exhibited excellent properties of active tumor-targeting, in vivo tumor imaging, and antitumor efficacy, which opens a new window for the development of natural therapeutic nanoplatforms.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Neoplasias/tratamento farmacológico , Vírus Oncolíticos/química , Pontos Quânticos/química , Prata/química , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Corantes Fluorescentes/química , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/diagnóstico por imagem , Imagem Óptica , Nanomedicina Teranóstica
6.
J Bacteriol ; 200(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686142

RESUMO

7-Hydroxytropolone (7-HT) is a symmetrical seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 includes 12 genes related to the synthesis of 7-HT; among these genes, those for two regulators, Orf1 and Orf12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR and ß-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6 to orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. Orf1 and Orf12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; Orf1 facilitates the expression of Orf12, and Orf12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. The overexpression of Orf12 decreased 7-HT yields, possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between Orf1 and Orf12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria.IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, in the biosynthesis of the novel iron scavenger 7-hydroxytropolone (7-HT) was verified in Pseudomonas donghuensis HYS. The coaction of LysR Orf1 and TetR/AcrR Orf12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness under iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Pseudomonas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Tropolona/análogos & derivados , Proteínas de Bactérias/genética , Pseudomonas/genética , Proteínas Repressoras/genética , Sideróforos/metabolismo , Fatores de Transcrição/genética , Tropolona/metabolismo
7.
Int J Nanomedicine ; 12: 3865-3879, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579774

RESUMO

Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.


Assuntos
Trifosfato de Adenosina/metabolismo , Compostos de Cádmio/metabolismo , Pontos Quânticos/metabolismo , Saccharomyces cerevisiae/metabolismo , Compostos de Selênio/metabolismo , Trifosfato de Adenosina/biossíntese , Cádmio/análise , Cádmio/metabolismo , Metabolismo Energético , Fluorescência , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Pontos Quânticos/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Selênio/análise , Selênio/metabolismo
8.
Sci Rep ; 7: 43141, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28224979

RESUMO

Ficin is classified as a sulfhydryl protease isolated from the latex of fig trees. In most cases, a particular enzyme fits a few types of substrate and catalyzes one type of reaction. In this investigation, we found sufficient proofs for the intrinsic peroxidase-like activity of ficin and designed experiments to examine its effectiveness in a variety of scenarios. Ficin can transform peroxidase substrates to colored products in the existence of H2O2. Our results also indicate that the active sites of peroxidase-like activity of ficin are different from that of protease, which reveals that one enzyme may catalyze more than one kind of substrate to perform different types of reactions. On the basis of these findings, H2O2 releasing from MCF-7 cells was detected successfully. Our findings support a wider application of ficin in biochemistry and open up the possibility of utilizing ficin as enzymatic mimics in biotechnology and environmental monitoring.


Assuntos
Ficina/metabolismo , Peroxidase/metabolismo , Domínio Catalítico , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Oxirredução
9.
Biometals ; 29(5): 817-26, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27542164

RESUMO

Pseudomonas donghuensis can excrete large quantities of iron chelating substances in iron-restricted environments. At least two kinds of iron-chelator can be found in the culture supernatant: fluorescent siderophores pyoverdins, and an ethyl acetate-extractable non-fluorescent substance. The non-fluorescent substance was the dominant contributor to the iron chelating activity of the culture supernatant of P. donghuensis. Electron ionization mass spectrometry, NMR spectroscopy, and IR spectroscopy identified the non-fluorescent iron-chelator as 7-hydroxytropolone. The stoichiometry of 7-hydroxytropolone ferric complex was determined to be 2:1 by the continuous variation method. The production of 7-hydroxytropolone was repressible by iron in the medium. Moreover, the inhibited growth of doubly siderophore-deficient strain of P. donghuensis under iron-limiting conditions could be partly restored by 7-hydroxytropolone. Thus, 7-hydroxytropolone was considered to play a previously undiscovered role as an iron-scavenger for P. donghuensis.


Assuntos
Quelantes de Ferro/metabolismo , Compostos Organometálicos/metabolismo , Pseudomonas/metabolismo , Tropolona/análogos & derivados , Relação Dose-Resposta a Droga , Quelantes de Ferro/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organometálicos/farmacologia , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tropolona/metabolismo , Tropolona/farmacologia
10.
Int J Nanomedicine ; 11: 3371-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524895

RESUMO

Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L) were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L) to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator), combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells.


Assuntos
Autofagia/efeitos dos fármacos , Compostos de Cádmio/toxicidade , Pontos Quânticos/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Telúrio/toxicidade , Animais , Proteínas de Fluorescência Verde/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Sirolimo/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
11.
Prep Biochem Biotechnol ; 46(7): 673-8, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26760080

RESUMO

The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858 bp encoding a polypeptide of 285 amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2 µM and 0.987 µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.


Assuntos
Candida tropicalis/enzimologia , Catecol 1,2-Dioxigenase/genética , Fenóis/metabolismo , Sequência de Aminoácidos , Candida tropicalis/metabolismo , Catecol 1,2-Dioxigenase/química , Catecol 1,2-Dioxigenase/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Oxigenases de Função Mista/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
12.
J Bacteriol ; 197(20): 3317-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260461

RESUMO

UNLABELLED: Natural plasmid transformation of Escherichia coli is a complex process that occurs strictly on agar plates and requires the global stress response factor σ(S). Here, we showed that additional carbon sources could significantly enhance the transformability of E. coli. Inactivation of phosphotransferase system genes (ptsH, ptsG, and crr) caused an increase in the transformation frequency, and the addition of cyclic AMP (cAMP) neutralized the promotional effect of carbon sources. This implies a negative role of cAMP in natural transformation. Further study showed that crp and cyaA mutations conferred a higher transformation frequency, suggesting that the cAMP-cAMP receptor protein (CRP) complex has an inhibitory effect on transformation. Moreover, we observed that rpoS is negatively regulated by cAMP-CRP in early log phase and that both crp and cyaA mutants show no transformation superiority when rpoS is knocked out. Therefore, it can be concluded that both the crp and cyaA mutations derepress rpoS expression in early log phase, whereby they aid in the promotion of natural transformation ability. We also showed that the accumulation of RpoS during early log phase can account for the enhanced transformation aroused by additional carbon sources. Our results thus demonstrated that the presence of additional carbon sources promotes competence development and natural transformation by reducing cAMP-CRP and, thus, derepressing rpoS expression during log phase. This finding could contribute to a better understanding of the relationship between nutrition state and competence, as well as the mechanism of natural plasmid transformation in E. coli. IMPORTANCE: Escherichia coli, which is not usually considered to be naturally transformable, was found to spontaneously take up plasmid DNA on agar plates. Researching the mechanism of natural transformation is important for understanding the role of transformation in evolution, as well as in the transfer of pathogenicity and antibiotic resistance genes. In this work, we found that carbon sources significantly improve transformation by decreasing cAMP. Then, the low level of cAMP-CRP derepresses the general stress response regulator RpoS via a biphasic regulatory pattern, thereby contributing to transformation. Thus, we demonstrate the mechanism by which carbon sources affect natural transformation, which is important for revealing information about the interplay between nutrition state and competence development in E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator sigma/metabolismo , Transformação Bacteriana/fisiologia , Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Transformação Bacteriana/genética
13.
Sci Rep ; 5: 11398, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26096816

RESUMO

Gold nanorods are a promising nanoscale material in clinical diagnosis and treatment. The physicochemical properties of GNRs, including size, shape and surface features, are crucial factors affecting their cytotoxicity. In this study, we investigated the effects of different aspect ratios and surface modifications on the cytotoxicity and cellular uptake of GNRs in cultured cells and in mice. The results indicated that the surface chemistry but not the aspect ratio of GNRs mediates their biological toxicity. CTAB-GNRs with various aspect ratios had similar abilities to induce cell apoptosis and autophagy by damaging mitochondria and activating intracellular reactive oxygen species (ROS). However, GNRs coated with CTAB/PSS, CTAB/PAH, CTAB/PSS/PAH or CTAB/PAH/PSS displayed low toxicity and did not induce cell death. CTAB/PAH-coated GNRs caused minimally abnormal cell morphology compared with CTAB/PSS and CTAB/PSS/PAH coated GNRs. Moreover, the intravenous injection of CTAB/PAH GNRs enabled the GNRs to reach tumor tissues through blood circulation in animals and remained stable, with a longer half-life compared to the other GNRs. Therefore, our results demonstrated that further coating can prevent cytotoxicity and cell death upon CTAB-coated GNR administration, similar to changing the GNR aspect ratio and CTAB/PAH coated GNRs show superior biological properties with better biocompatibility and minimal cytotoxicity.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Compostos de Cetrimônio/farmacologia , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Tensoativos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Cetrimônio , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Nanotubos/química , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
14.
Nanoscale ; 6(21): 13126-34, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25250903

RESUMO

Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.


Assuntos
Núcleo Celular/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Oxigênio/química , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Cães , Corantes Fluorescentes/química , Humanos , Células Madin Darby de Rim Canino , Potencial da Membrana Mitocondrial , Microscopia Confocal , Peso Molecular , Necrose , Peptídeos/química , Espécies Reativas de Oxigênio/química , Solubilidade , Células Vero , Água/química
15.
Can J Microbiol ; 60(9): 585-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25140701

RESUMO

The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 µmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.


Assuntos
Candida tropicalis/enzimologia , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Fenóis/química , Sequência de Aminoácidos , Sequência de Bases , Candida tropicalis/genética , Clonagem Molecular , Inibidores Enzimáticos/química , Estabilidade Enzimática , Escherichia coli , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Cinética , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Oxirredução , Fenol , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
16.
ACS Nano ; 8(5): 5116-24, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24779675

RESUMO

Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.


Assuntos
Técnicas Biossensoriais , Nanotecnologia/métodos , Pontos Quânticos , Selênio/química , Linhagem Celular Tumoral , Desenho de Equipamento , Corantes Fluorescentes/química , Humanos , Fragmentos Fc das Imunoglobulinas/química , Separação Imunomagnética , Vírus da Influenza A Subtipo H9N2 , Ligantes , Limite de Detecção , Teste de Materiais , Engenharia Metabólica , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanopartículas/química , Nanoestruturas/química , Óptica e Fotônica , Staphylococcus aureus
17.
Curr Microbiol ; 67(5): 550-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23743599

RESUMO

Artificial plasmid DNA transformation of Escherichia coli induced by calcium chloride is a routine technique in molecular biology and genetic engineering processes, but its mechanism has remained elusive. Because adenosine monophosphate (AMP) has been found to regulate natural transformation in Haemophilus influenza, we aimed to investigate the effects of AMP and its derivatives on E. coli transformation by treating competence with different concentrations of them. Analysis of the transformation efficiencies revealed that AMP inhibited the artificial plasmid DNA transformation of E. coli in a concentration- and time-dependent manner. Furthermore, we found that AMP had no effect on the expression of the transformed gene but that the intracellular AMP level of the competent cells rose after a 6 h treatment. These results suggested that the intracellular AMP level had an important role in E. coli transformation. And these have useful implications for the further investigation of the mechanism of E. coli transformation.


Assuntos
Monofosfato de Adenosina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/genética , Transformação Bacteriana/efeitos dos fármacos , Cloreto de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Espaço Extracelular/metabolismo , Expressão Gênica , Espaço Intracelular/metabolismo , Fatores de Tempo
18.
ACS Nano ; 7(3): 2240-8, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23398777

RESUMO

Microbial cells have shown a great potential to biosynthesize inorganic nanoparticles within their orderly regulated intracellular environment. However, very little is known about the mechanism of nanoparticle biosynthesis. Therefore, it is difficult to control intracellular synthesis through the manipulation of biological processes. Here, we present a mechanism-oriented strategy for controlling the biosynthesis of fluorescent CdSe quantum dots (QDs) by means of metabolic engineering in yeast cells. Using genetic techniques, we demonstrated that the glutathione metabolic pathway controls the intracellular CdSe QD formation. Inspired from this mechanism, the controllability of CdSe QD yield was realized through engineering the glutathione metabolism in genetically modified yeast cells. The yeast cells were homogeneously transformed into more efficient cell-factories at the single-cell level, providing a specific way to direct the cellular metabolism toward CdSe QD formation. This work could provide the foundation for the future development of nanomaterial biosynthesis.


Assuntos
Glutationa/metabolismo , Pontos Quânticos , Compostos de Cádmio/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Microscopia de Fluorescência , Nanotecnologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Compostos de Selênio/metabolismo
19.
Int J Nanomedicine ; 7: 2631-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22679373

RESUMO

Quantum dots (QDs) have many potential clinical and biological applications because of their advantages over traditional fluorescent dyes. However, the genotoxicity potential of QDs still remains unclear. In this paper, a plasmid-based system was designed to explore the genotoxic mechanism of QDs by detecting changes in DNA configuration and biological activities. The direct chemicobiological interactions between DNA and mercaptoacetic acid-coated CdSecore QDs (MAA-QDs) were investigated. After incubation with different concentrations of MAA-QDs (0.043, 0.13, 0.4, 1.2, and 3.6 µmol/L) in the dark, the DNA conversion of the covalently closed circular (CCC) DNA to the open circular (OC) DNA was significantly enhanced (from 13.9% ± 2.2% to 59.9% ± 12.8%) while the residual transformation activity of plasmid DNA was greatly decreased (from 80.7% ± 12.8% to 13.6% ± 0.8%), which indicated that the damages to the DNA structure and biological activities induced by MAA-QDs were concentration-dependent. The electrospray ionization mass spectrometry data suggested that the observed genotoxicity might be correlated with the cadmium-mercaptoacetic acid complex (Cd-MAA) that is formed in the solution of MAA-QDs. Circular dichroism spectroscopy and transformation assay results indicated that the Cd-MAA complex might interact with DNA through the groove-binding mode and prefer binding to DNA fragments with high adenine and thymine content. Furthermore, the plasmid transformation assay could be used as an effective method to evaluate the genotoxicities of nanoparticles.


Assuntos
Compostos de Cádmio/toxicidade , Cádmio/toxicidade , DNA Circular/efeitos dos fármacos , Mutagênicos/toxicidade , Pontos Quânticos , Compostos de Selênio/toxicidade , Tioglicolatos/toxicidade , Animais , Composição de Bases , Bovinos , Dicroísmo Circular , DNA Circular/química , Escherichia coli/genética , Testes de Mutagenicidade , Conformação de Ácido Nucleico/efeitos dos fármacos , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Transformação Bacteriana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA