Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
ACS Nano ; 17(18): 17845-17857, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37712845

RESUMO

Brain inflammation is regarded as one of the leading causes that aggravates secondary brain injury and hinders the prognosis of ischemic stroke. After ischemic stroke, high quantities of peripheral neutrophils are recruited to brain lesions and release neutrophil extracellular traps (NETs), leading to the aggravation of blood-brain barrier (BBB) damage, activation of microglia, and ultimate neuronal death. Herein, a smart multifunctional delivery system has been developed to regulate immune disorders in the ischemic brain. Briefly, Cl-amidine, an inhibitor of peptidylarginine deiminase 4 (PAD4), is encapsulated into self-assembled liposomal nanocarriers (C-Lipo/CA) that are modified by reactive oxygen species (ROS)-responsive polymers and fibrin-binding peptide to achieve targeting ischemic lesions and stimuli-responsive release of a drug. In the mouse model of cerebral artery occlusion/reperfusion (MCAO), C-Lipo/CA can suppress the NETs release process (NETosis) and further inhibit the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway in an ischemic brain. In addition, MCAO mice treated with C-Lipo/CA significantly mitigated ischemic and reperfusion injury, with a reduction in the area of cerebral infarction to 12.1%, compared with the saline group of about 46.7%. These results demonstrated that C-Lipo/CA, which integrated microglia regulation, BBB protection, and neuron survival, exerts a potential therapy strategy to maximize ameliorating the mortality of ischemic stroke.


Assuntos
Armadilhas Extracelulares , AVC Isquêmico , Animais , Camundongos , Interferons , Nucleotídeos Cíclicos
2.
J Control Release ; 359: 224-233, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290721

RESUMO

Infiltrative glioma growth makes surgical excision incomplete, and the residual tumor cells proliferate rapidly. Residual glioma cells evade phagocytosis by macrophages through upregulating anti-phagocytosis molecule CD47, which binds to the signal regulatory protein alpha (SIRPα) of macrophages. Specifically, blocking the CD47-SIRPα pathway is a potential strategy for post-resection glioma treatment. In addition, the anti-CD47 antibody (α-CD47) in combination with temozolomide (TMZ) caused an enhanced pro-phagocytic effect due to the TMZ not only destroying DNA but also inducing endoplasmic reticulum stress response of glioma cells. However, the obstruction of the blood-brain barrier makes systemic combination therapy not ideal for post-resection glioma treatment. Herein, we designed a temperature-sensitive hydrogel system based on a moldable thermosensitive hydroxypropyl chitin (HPCH) copolymer to encapsulate both α-CD47 and TMZ as α-CD47&TMZ@Gel for in situ postoperative cavity administration. Through the in vitro and in vivo evaluations, α-CD47&TMZ@Gel significantly inhibited glioma recurrence post-resection through enhancement of pro-phagocytosis of macrophages, recruitment, and activation of CD8+ T cells and NK cells.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Glioblastoma/metabolismo , Temozolomida/uso terapêutico , Linfócitos T CD8-Positivos/patologia , Receptores Imunológicos , Glioma/tratamento farmacológico
3.
Nat Commun ; 14(1): 3647, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339991

RESUMO

Stereoselective ring-opening polymerization catalysts are used to produce degradable stereoregular poly(lactic acids) with thermal and mechanical properties that are superior to those of atactic polymers. However, the process of discovering highly stereoselective catalysts is still largely empirical. We aim to develop an integrated computational and experimental framework for efficient, predictive catalyst selection and optimization. As a proof of principle, we have developed a Bayesian optimization workflow on a subset of literature results for stereoselective lactide ring-opening polymerization, and using the algorithm, we identify multiple new Al complexes that catalyze either isoselective or heteroselective polymerization. In addition, feature attribution analysis uncovers mechanistically meaningful ligand descriptors, such as percent buried volume (%Vbur) and the highest occupied molecular orbital energy (EHOMO), that can access quantitative and predictive models for catalyst development.

4.
Nanoscale ; 15(30): 12518-12529, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278298

RESUMO

Despite aggressive treatments, including surgery, chemotherapy and radiotherapy, the prognosis of glioblastoma (GBM) remains poor, and tumor recurrence is inevitable. The FDA-approved CDK4/6 inhibitor palbociclib (PB) showed interesting anti-GBM effects, but its brain penetration is limited by the blood-brain barrier. The aim of this project is to find whether the cellulose-based hydrogel via in situ injection could provide an alternative route to PB brain delivery and generate sufficient drug exposure in orthotopic GBM. In brief, PB was encapsulated in a cellulose nanocrystal network structure crosslinked by polydopamine via divalent Cu2+ and hexadecylamine. The formed hydrogel (PB@PH/Cu-CNCs) exhibited sustained drug retention and acid-responsive network de-polymerization for controlled release in vivo. Specifically, the released Cu2+ catalyzed a Fenton-like reaction to generate reactive oxygen species (ROS), which was further enhanced by PB, and consequently, irreversible senescence and apoptosis were induced in GBM cells. Finally, PB@PH/Cu-CNCs demonstrated a more potent anti-GBM effect than those treated with free PB or PH/Cu-CNCs (drug-free hydrogel) in cultured cells or in an orthotopic glioma model. These results prove that the injection of the PB-loaded hydrogel in situ is an effective strategy to deliver the CDK4/6 inhibitor into the brain and its anti-GBM effect can be further enhanced by combining Cu2+-mediated Fenton-like reaction.


Assuntos
Glioblastoma , Celulose/química , Hidrogéis/química , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Concentração de Íons de Hidrogênio , Proliferação de Células , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Senescência Celular , Apoptose , Espécies Reativas de Oxigênio/metabolismo
5.
EBioMedicine ; 90: 104499, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870200

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment. METHODS: The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting. IVIS Spectrum imaging and Laser Doppler Flow Metry are applied to explore the microcirculation hypoxia induced by NETs in the development of CIPN. Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) is used to degrade NETs. FINDINGS: The level of NETs in patients received chemotherapy increases significantly. And NETs accumulate in the DRG and limbs in CIPN mice. It leads to disturbed microcirculation and ischemic status in limbs and sciatic nerves treated with oxaliplatin (L-OHP). Furthermore, targeting NETs with DNase1 significantly reduces the chemotherapy-induced mechanical hyperalgesia. The pharmacological or genetic inhibition on myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) dramatically improves microcirculation disturbance caused by L-OHP and prevents the development of CIPN in mice. INTERPRETATION: In addition to uncovering the role of NETs as a key element in the development of CIPN, our finding provides a potential therapeutic strategy that targeted degradation of NETs by SHp-guided DNase1 could be an effective treatment for CIPN. FUNDING: This study was funded by the National Natural Science Foundation of China81870870, 81971047, 81773798, 82271252; Natural Science Foundation of Jiangsu ProvinceBK20191253; Major Project of "Science and Technology Innovation Fund" of Nanjing Medical University2017NJMUCX004; Key R&D Program (Social Development) Project of Jiangsu ProvinceBE2019732; Nanjing Special Fund for Health Science and Technology DevelopmentYKK19170.


Assuntos
Antineoplásicos , Armadilhas Extracelulares , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Oxaliplatina/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Antineoplásicos/efeitos adversos
6.
Plant Sci ; 326: 111526, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343868

RESUMO

Aquaporins, the major facilitators of water transport across membranes, are involved in growth and development and adaptation to drought stress in plants. In this study, a plasma membrane intrinsic protein (SiPIP2;4) was cloned from Saussurea involucrata, a cold-tolerant hardy herb. The expression of SiPIP2;4 increased the stomatal density and sensitivity of tobacco (Nicotiana tabacum), thus, affecting the plant's growth and resistance to the diverse water environment. The higher stomatal density under well-watered conditions effectively promoted the photosynthetic rate, which led to the rapid growth of transgenic lines. The stomata in the transgenic lines responded more sensitively to the vapor pressure deficit than the wild-type under different levels of ambient humidity. Their stomatal apertures positively correlated with the ambient humidity. Under drought conditions, the overexpression of SiPIP2;4 promoted rapid stomatal closure, reduced water dissipation, and enhanced drought tolerance. These results indicate that SiPIP2;4 regulates the density and sensitivity of plant stomata, thus, playing an important role in balancing plant growth and stress tolerance. This suggests that SiPIP2;4 has the potential to serve as a genetic resource for crop improvement.


Assuntos
Nicotiana , Saussurea , Nicotiana/metabolismo , Saussurea/genética , Saussurea/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Seca , Estresse Fisiológico/genética , Secas , Estômatos de Plantas/fisiologia , Água/metabolismo
7.
ACS Appl Mater Interfaces ; 14(24): 27623-27633, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35673881

RESUMO

Glioma is the most lethal brain tumor with a poor prognosis, and a combination of multiple therapeutic strategies is critical for postoperative glioma treatment. Herein, a multifunctional hybrid hydrogel system (designated as CP&CL@RNPPTX-Gel) was developed for local treatment of postoperative glioma. The system was composed of self-illuminating chlorin e6 (Ce6) conjugated with luminol molecule (CL)-loaded glioma-targeting paclitaxel prodrug nanoparticles and copper peroxide nanodots (CP NDs) coembedded into a three-dimensional thermosensitive hydroxypropyl chitin hydrogel frame. After injection of CP&CL@RNPPTX-Gel into the cavity of postoperative glioma, the solution could be cross-linked into the gel as a drug reservoir under body temperature stimulation. Then, the sustained-released CP NDs decomposed into Cu2+ and H2O2 in the acidic microenvironment of the glioma cells to exert chemodynamic therapy (CDT). Meanwhile, Cu2+ could catalyze the self-luminescence of CL to induce photodynamic therapy (PDT) without external excitation light. Moreover, paclitaxel prodrug nanoparticles degraded into paclitaxel to restrain residual glioma cells in response to intracellular reduced glutathione (GSH). The in vitro and in vivo results showed that CP&CL@RNPPTX-Gel had great potential as a multifunctional hybrid hydrogel system with remarkable therapeutic effects for postoperative glioma treatment via a combination of chemotherapy, CDT, and PDT.


Assuntos
Glioma , Nanopartículas , Fotoquimioterapia , Pró-Fármacos , Linhagem Celular Tumoral , Cobre/farmacologia , Glioma/tratamento farmacológico , Glioma/cirurgia , Humanos , Hidrogéis/farmacologia , Peróxido de Hidrogênio/farmacologia , Nanopartículas/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Pró-Fármacos/farmacologia , Microambiente Tumoral
8.
J Control Release ; 345: 786-797, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367277

RESUMO

It is well known that glioma is currently the most malignant brain tumor. Because of the existence of blood-brain barrier (BBB) and tumor cell heterogeneity, systemic chemotherapy exerts unsatisfied therapeutic effect for the treatment of glioma after surgical resection and may even damage the body's immune system. Here, we developed an in situ sustained-release hydrogel delivery system for combined chemo-immunotherapy of glioma by combined chemotherapy drug and immunoadjuvant through the resection cavity local delivery. Briefly, glioma homing peptide modified paclitaxel targeting nanoparticles (PNPPTX) and mannitolated immunoadjuvant CpG targeting nanoparticles (MNPCpG) were embedded into PLGA1750-PEG1500-PLGA1750 thermosensitive hydrogel framework (PNPPTX&MNPCpG@Gel). The in vitro and in vivo results showed that the targeting nanoparticles-hydrogel hybrid system could cross-link into a gel drug reservoir when injected into the resection cavity of glioma. And then, the sustained-release PNPPTX could target the residual infiltration glioma cells and produce tumor antigens. Meanwhile, MNPCpG targeted and activated the antigen-presenting cells, which enhanced the tumor antigen presentation ability and activated CD8+T and NK cells to reverse immunosuppression of glioma microenvironment. This study indicated that the PNPPTX&MNPCpG@Gel system could enhance the therapeutic effect of glioma by chemo-immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Nanopartículas , Adjuvantes Imunológicos/uso terapêutico , Antígenos de Neoplasias/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Hidrogéis/uso terapêutico , Fatores Imunológicos/uso terapêutico , Imunoterapia , Microambiente Tumoral
9.
ACS Appl Mater Interfaces ; 13(50): 59683-59694, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34902970

RESUMO

Tumor-associated neutrophil extracellular traps (NETs) play a critical role in promoting tumor growth and assisting tumor metastasis. Herein, a smart nanocarrier (designated as mP-NPs-DNase/PTX) based on regulating tumor-associated NETs has been developed, which consists of a paclitaxel (PTX) prodrug nanoparticle core and a poly-l-lysine (PLL) conjugated with the matrix metalloproteinase 9 (MMP-9)-cleavable Tat-peptide-coupled deoxyribonuclease I (DNase I) shell. After accumulating at the site of the tumor tissue, the nanocarrier can release DNase I in response to MMP-9 to degrade the structure of NETs. Then, the remaining moiety can uptake the tumor cells via the mediation of exposed cell penetrating peptide, and the PTX prodrug nanoparticles will lyse in response to the high intracellular concentration of reduced glutathione to release PTX to exert a cytotoxic effect of tumor cells. Through in vitro and in vivo evaluations, it has been proven that mP-NPs-DNase/PTX could serve as potential NET-regulated nanocarrier for enhanced inhibition of malignant tumor growth and distant metastasis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Paclitaxel/farmacologia , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Armadilhas Extracelulares/química , Humanos , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Nanopartículas/química , Neutrófilos/química , Paclitaxel/química , Paclitaxel/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo
10.
Int J Nanomedicine ; 15: 5491-5501, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848385

RESUMO

PURPOSE: Currently, the treatment of brain metastases from non-small cell lung cancer (NSCLC) is rather difficult in the clinic. A combination of small molecule-targeted drug and chemo-drug is a promising therapeutic strategy for the treatment of NSCLC brain metastases. But the efficacy of this combination therapy is not satisfactory due to the blood-brain barrier (BBB). Therefore, it is urgent to develop a drug delivery system to enhance the synergistic therapeutic effects of small molecule-targeted drug and chemo-drug for the treatment of NSCLC brain metastases. METHODS: T7 peptide installed and osimertinib (AZD9291) loaded intracellular glutathione (GSH) responsive doxorubicin prodrug self-assembly nanocarriers (T7-DSNPs/9291) have been developed as a targeted co-delivery system to enhance the combined therapeutic effect on brain metastases from NSCLC. In vitro cell experiments, including intracellular uptake assay, in vitro BBB transportation, and MTT assay were used to demonstrate the efficacy of T7-DSNPs/9291 in NSCLC brain metastasis in vitro. Real-time fluorescence imaging analysis, magnetic resonance imaging analysis, and Kaplan-Meier survival curves were used to study the effect of T7-DSNPs/9291 on an animal model in vivo. RESULTS: T7-DSNPs/9291 could significantly enhance BBB penetration of AZD9291 and doxorubicin via transferrin receptor-mediated transcytosis. Moreover, T7-DSNPs/9291 showed significant anti-NSCLC brain metastasis effect and prolonged median survival of an intracranial NSCLC brain metastasis animal model. CONCLUSION: T7-DSNPs/9291 is a potential drug delivery system for the combined therapy of brain metastasis from NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Portadores de Fármacos/administração & dosagem , Neoplasias Pulmonares/patologia , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Colágeno Tipo IV/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos Endogâmicos BALB C , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Fragmentos de Peptídeos/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Receptores da Transferrina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Pharmacol ; 11: 558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425792

RESUMO

The serious therapeutic obstacles to glioma treatment include poor penetration across the blood-brain barrier (BBB) and low accumulation of therapeutic drugs at tumor sites. In this study, borneol combined with CGKRK peptide (a ligand of the heparan sulfate which overexpress on the glioma cells) modified paclitaxel prodrug self-assembled redox-responsive nanoparticles (CGKRK-PSNPs) were hypothesized to enhance the BBB penetration ability and active tumor targeting efficiency, respectively. The resulting CGKRK-PSNPs possessed a spherical shape with a small particle size (105.61 ± 1.53 nm) and high drug loading for PTX (54.18 ± 1.13%). The drug release behavior proved that CGKRK-PSNPs were highly sensitive to glutathione (GSH) redox environment. The in vitro cell experiments suggested that CGKRK-PSNPs significantly increased the cellular uptake and cytotoxicity of U87MG cells, meanwhile CGKRK-PSNPs showed the low cytotoxicity against BCEC cells. Combined with borneol, CGKRK-PSNPs exhibited enhanced transportation across in vitro BBB model. In intracranial U87MG glioma-bearing nude mice, the higher accumulation of CGKRK-PSNPs combined with borneol was observed through real-time fluorescence image. Moreover, the in vivo anti-glioma results confirmed that CGKRK-PSNPs combined with borneol could improve the anti-glioma efficacy with the prolonged medium survival time (39 days). In conclusion, the collaborative strategy of CGKRK-PSNPs combined with borneol provided a promising drug delivery routine for glioblastoma therapy.

12.
Mol Pharm ; 16(5): 2172-2183, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30978027

RESUMO

Although photodynamic therapy (PDT) has been an attractive strategy for several cancer treatments in the clinical setting, PDT efficacy is attenuated by consumption of oxygen. To address this photodynamic issue, we adopted a phototherapy-chemotherapy combination strategy based on targeted delivery of the near-infrared photosensitizer indocyanine green (ICG), photothermal conversion agent polydopamine (PDA), and tirapazamine (TPZ), a hypoxia-activated prodrug. Under laser irradiation, ICG consumption of oxygen and aggravated hypoxia in tumor sites can activate TPZ to damage DNA. In parallel, ICG produces reactive oxygen species which work in synergy with PDA to enhance phototherapeutic efficiency. Herein, hybrid CaCO3/TPGS nanoparticles delivering ICG, PDA, and TPZ (ICG-PDA-TPZ NPs) were designed for effective and safe cancer therapy. ICG-PDA-TPZ NPs showed significantly improved cellular uptake and accumulation in tumors. Furthermore, we demonstrated that ICG-PDA-TPZ NPs showed intensive photodynamic and photothermal effects in vitro and in vivo, which synergized with TPZ in subcutaneous U87 malignant glioma growth and orthotopic B16F10 tumor inhibition, with negligible side effects. Thus, ICG-PDA-TPZ NPs could be an effective strategy for improvement of PDT.


Assuntos
Hipertermia Induzida , Verde de Indocianina , Indóis , Nanopartículas , Neoplasias , Fotoquimioterapia , Pró-Fármacos , Radiossensibilizantes , Tirapazamina , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hipertermia Induzida/métodos , Verde de Indocianina/metabolismo , Verde de Indocianina/uso terapêutico , Indóis/metabolismo , Indóis/uso terapêutico , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/tratamento farmacológico , Fotoquimioterapia/efeitos adversos , Fotoquimioterapia/métodos , Polímeros/metabolismo , Polímeros/uso terapêutico , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Radiossensibilizantes/metabolismo , Radiossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/efeitos da radiação , Tirapazamina/metabolismo , Tirapazamina/uso terapêutico , Distribuição Tecidual , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
ACS Nano ; 12(6): 5417-5426, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29869497

RESUMO

Ischemic stroke is a leading cause of long-term disability and death worldwide. Current drug delivery vehicles for the treatment of ischemic stroke are less than satisfactory, in large part due to their short circulation lives, lack of specific targeting to the ischemic site, and poor controllability of drug release. In light of the upregulation of reactive oxygen species (ROS) in the ischemic neuron, we herein developed a bioengineered ROS-responsive nanocarrier for stroke-specific delivery of a neuroprotective agent, NR2B9C, against ischemic brain damage. The nanocarrier is composed of a dextran polymer core modified with ROS-responsive boronic ester and a red blood cell (RBC) membrane shell with stroke homing peptide (SHp) inserted. These targeted "core-shell" nanoparticles (designated as SHp-RBC-NP) could thus have controlled release of NR2B9C triggered by high intracellular ROS in ischemic neurons after homing to ischemic brain tissues. The potential of the SHp-RBC-NP for ischemic stroke therapy was systematically evaluated in vitro and in rat models of middle cerebral artery occlusion (MCAO). In vitro results showed that the SHp-RBC-NP had great protective effects on glutamate-induced cytotoxicity in PC-12 cells. In vivo pharmacokinetic (PK) and pharmacodynamic (PD) testing further demonstrated that the bioengineered nanoparticles can drastically prolong the systemic circulation of NR2B9C, enhance the active targeting of the ischemic area in the MCAO rats, and reduce ischemic brain damage.


Assuntos
Ácidos Borônicos/química , Isquemia Encefálica/tratamento farmacológico , Dextranos/farmacologia , Portadores de Fármacos/química , Ésteres/química , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/química , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/metabolismo , Dextranos/química , Portadores de Fármacos/farmacologia , Masculino , Nanopartículas/química , Fármacos Neuroprotetores/química , Células PC12 , Tamanho da Partícula , Polímeros/química , Polímeros/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/metabolismo , Propriedades de Superfície
14.
J Neurochem ; 146(5): 598-612, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29858554

RESUMO

Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF-κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF-κB in stress-induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF-κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro, implicating activation of NF-κB signaling in chronic stress-induced pathological processes. Using the novelty-suppressed feeding (NSF) and elevated-plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intra-hippocampal infusion), an inhibitor of NF-κB, rescued the CMS- or glucocorticoid-induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS-induced up-regulation of neuronal nitric oxide synthase (nNOS), carboxy-terminal PDZ ligand of nNOS (CAPON), and dexamethasone-induced ras protein 1 (Dexras1) and dendritic spine loss of dentate gyrus (DG) granule cells. Moreover, over-expression of CAPON by infusing LV-CAPON-L-GFP into the hippocampus induced nNOS-Dexras1 interaction and anxiety-like behaviors, and inhibition of NF-κB by PDTC reduced the LV-CAPON-L-GFP-induced increases in nNOS-Dexras1 complex and anxiogenic-like effects in mice. These findings indicate that hippocampal NF-κB mediates anxiogenic behaviors, probably via regulating the association of nNOS-CAPON-Dexras1, and uncover a novel approach to the treatment of anxiety disorders.


Assuntos
Ansiedade/etiologia , Ansiedade/patologia , Hipocampo/citologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Domínios PDZ/fisiologia , Estresse Psicológico/complicações , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Corticosterona/metabolismo , Corticosterona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/fisiologia , Estresse Psicológico/patologia , Tiocarbamatos/farmacologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Proteínas ras/metabolismo
15.
Front Pharmacol ; 9: 1556, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723412

RESUMO

Superparamagnetic iron-oxide nanoparticle (SPION) has gained tremendous attention for drug delivery applications due to their unique properties. In this study, we developed a dual targeted delivery system with paclitaxel (PTX) and SPION co-loaded PLGA nanoparticles, modified with Pep-1 peptide (Pep-NP-SPION/PTX), to achieve magnetic targeting and active targeting for tumor treatment. SPION was synthesized by a co-precipitation method and was then encapsulated with PTX simultaneously into PLGA nanoparticles. After that, the non-complex was conjugated with Pep-1 through chemical modification. The resulting Pep-NP-SPION/PTX showed a spherical morphology and an average size of 100 nm. The enhancement cellular uptake of Pep-NP-SPION was demonstrated in in vitro through cell experiments. The IC50 value of Pep-NP-SPION/PTX and NP-SPION/PTX was determined to be 10.2 and 19.4 µg/mL, respectively. A biodistribution study showed that obvious higher accumulations of Pep-NP-SPION was observed in tumors, compared with that of non-targeting nanocomposites. Moreover, under the condition of a magnetic field, both NP-SPION and Pep-NP-SPION exhibited much higher tumor distribution. Furthermore, Pep-NP-SPION/PTX presented desirable in vivo anti-tumor effects based on active targeting and magnetic targeting characteristics. Altogether, Pep-NP-SPION/PTX can offer magnetic targeting and receptor mediated targeting to enhance the anti-tumor outcome.

16.
Colloids Surf B Biointerfaces ; 160: 527-534, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024917

RESUMO

Hybrid nanocarriers based on mesoporous silica nanoparticles (MSNs) and supported lipid bilayer (SLB) have been studied as drug delivery system. It still remains challenges to develop these nanocarriers (SLB-MSNs) with on-demand drug release profile for chemotherapy. Here, we reported the biocompatible SLB-MSNs with high drug loading, which could release doxorubicin (DOX) in response to hyperthermia and reduce premature release. After synthesis of MSNs via a sol-gel procedure, the thermo-responsive SLB was deposited on the MSNs by sonication to completely seal the mesopores. The obtained SLB-MSNs consisted of 50 nm-sized MSN cores and 6.3 nm-thick SLB shells. Due to the big surface and pore volume of MSNs, the high drug loading content (7.30±0.02%) and encapsulation efficiency (91.16±0.28%) were achieved. The SLB blocking the mesopores reduced 50% of premature release and achieved on-demand release in a thermo-responsive manner. Moreover, SLB-MSNs showed good hemocompatibility at any tested concentration (25-700µg/mL), while bare MSNs caused 100% of hemolysis at concentration larger than 325µg/mL. In addition, in vitro U251 cell uptake experiment demonstrated that compared with uncapped MSNs, SLB-MSNs could prevent untargeted cellular uptake of DOX owing to reduced premature release and steric hindrance of PEG, which would be beneficial to minimize toxicity for healthy tissues. These results indicated that SLB-MSNs with thermo-responsive release capacity possessed great potential in future synergistic thermo-chemotherapy.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Bicamadas Lipídicas/química , Nanopartículas/química , Dióxido de Silício/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Hemólise/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Porosidade , Ratos , Temperatura
17.
Drug Deliv ; 24(1): 1401-1409, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28933201

RESUMO

Drug delivery systems based on nanoparticles (nano-DDS) have aroused attentions for the treatment of glioblastoma (GBM), the most malignant brain cancer with a dismal prognosis. However, there are still numerous unmet challenges for traditional nano-DDS, such as the poor nanoparticle penetration, short retention in the GBM parenchyma and low glioma targeting ability. Herein, we used Pep-1 and CREKA peptides to construct a novel multifunctional GBM targeting nano-DDS (PC-NP). Pep-1 was used to overcome the blood-brain tumor barrier (BBTB) and home to glioma cells via interleukin-13 receptor-α2-mediated endocytosis, and CREKA was used to bind to fibrin-fibronectin complexes abundantly expressed in tumor microenvironment for enhanced retention in the GBM. Biological studies showed that the cellular uptake of PC-NP by U87MG cells was significantly enhanced compared with the non-targeting NP. Furthermore, CREKA modification increased the binding capacity of PC-NP to fibrin-fibronectin complexes as confirmed by the competition experiment. In accordance with the increased cellular uptake, PC-NP remarkably increased the cytotoxicity of its payload paclitaxel (PTX) against U87MG cells with an IC50 of 0.176 µg/mL. In vivo fluorescence imaging and antiglioma efficacy evaluation further confirmed that PC-NP accumulated effectively and penetrated deeply into GBM tissue. PC-NP-PTX exhibited a median survival time as long as 61 days in intracranial GBM-bearing mice. In conclusion, our findings indicated PC-NP as a promising nano-DDS for GBM targeting delivery of anticancer drugs.


Assuntos
Glioblastoma , Animais , Neoplasias Encefálicas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas , Paclitaxel
18.
Adv Mater ; 29(13)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28160337
19.
ACS Appl Mater Interfaces ; 9(1): 211-217, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27976583

RESUMO

Glioblastoma multiforme (GBM) presents one of the most lethal brain tumor with a dismal prognosis. And nanodrug delivery system (nano-DDS) have raised a lot of concern, while the conventional nanoformulations addressed many limitations, especially the low drug loading capacity and poor stability in vivo. Herein, we proposed PTX prodrug (PTX-SS-C18) conjugate self-assembled nanoparticles (PSNPs) functionalized with Pep-1, glioma homing peptide, to overcome the blood brain tumor barrier (BBTB) via interleukin 13 receptor α2 (IL-13Rα2)-mediated endocytosis for targeting GMB. This nanocarrier was with ultrahigh drug loading capacity (56.03%) and redox-sensitivity to the up-expression of glutathione in glioma tumors. And compared with PEG-PSNPs, Pep-PSNPs could significantly enhance cellular uptake in U87MG cells via IL-13Rα2-mediated endocytosis. Enhanced cytotoxicity of Pep-PSNPs against U87MG cells and BCEC cells pretreated with glutathione monoester (GSH-OEt) confirmed that this nanosystem was sensitive to reduction environment, and there was significant difference between targeting and nontargeting groups in MTT assay. Real-time fluorescence image of intracranialU87MG glioma-bearing mice revealed that Pep-PSNPs could more efficiently accumulate at tumor site and improve the penetration. Furthermore, the ex vivo fluorescence imaging and corresponding semiquantitative results displayed that the glioma fluorescence intensity of Pep-PSNPs group was 1.74-fold higher than that of nontargeting group. Pep-PSNPs exhibited remarkable antiglioblastoma efficacy with an extended median survival time. In conclusion, Pep-PSNPs had a promising perspective as a targeting drug delivery system of PTX for glioma treatment.


Assuntos
Nanopartículas , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel , Pró-Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA