Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570003

RESUMO

The challenge of drug resistance in bacteria caused by the over use of biotics is increasing during the therapy process, which has attracted great attentions of the clinicians and scientists around the world. Recently, photodynamic therapy (PDT) triggered by photosensitizer (PS) has become a promising treatment method because of its high efficacy, easy operation, and low side effect. Herein, the poly-l-lysine (PLL) modified metal-organic framework (MOF) nanoparticles, ZIF/PLL-CIP/CUR, were synthesized to allow both reactive oxygen species (ROS) responsive drug release and photodynamic effect for synergistic therapy against drug resistant bacterial infections. The PLL was modified on the shell of the zeolite imidazole framework (ZIF) by the ROS-responsive thioketal linker for controllable CIP release. CUR were encapsulated in ZIF as the photosensitizer for blue light mediated photodynamic effect to produce singlet oxygen (1O2) and superoxide anion radical (O2-) for efficient inhibition towards methicillin-resistant Staphylococcus aureus (MRSA). The charge conversion from negative charge (-4.6 mV) to positive charge (2.6 mV) was observed at pH 7.4 and pH 5.5, and 70.9 % CIP was found released at pH 5.5 in the presence of H2O2, which suggests the good biosafety at physiological pH and ROS-responsive drug release of the as-prepared nanoparticle in the bacterial microenvironment. The as-prepared nanoparticles could effectively kill MRSA and disrupt bacterial biofilm by combination of chemo- and photodynamic therapy. In mice model, the as-prepared nanoparticles exhibited excellent biosafety and synergistic effect with 98.81 % healing rate in treatment of MRSA infection, which is considered as a promising candidate in combating drug resistant bacterial infection.


Assuntos
Estruturas Metalorgânicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polilisina , Espécies Reativas de Oxigênio , Polilisina/química , Polilisina/farmacologia , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Nanopartículas/química , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Concentração de Íons de Hidrogênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Liberação Controlada de Fármacos , Curcumina/farmacologia , Curcumina/química , Infecções Estafilocócicas/tratamento farmacológico
2.
Chronobiol Int ; 41(2): 193-200, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275089

RESUMO

This study aimed to investigate the expression of circadian clock genes in mouse alveolar bone, and the possible reasons for these changes. Fifty C57 mice were orally inoculated with P. gingivalis, establishing a model of periodontitis using healthy mice as controls. The alveolar bone of both groups was taken for micro-computed tomography scanning to measure the amount of attachment loss, and the relative expression of mRNA in each clock gene and periodontitis related inflammatory factor was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). After the establishment of the mouse model, the height of alveolar bone in the periodontitis group was significantly lower than that in the normal group (p < 0.05). The relative transcriptional level of Bmal1, Per2, and Cry1 mRNA was in the circadian rhythm in the normal group (p ≤ 0.05), while in the periodontitis group, its circadian rhythm disappeared and the transcriptional level characteristics were changed. Interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and interferon (IFN-γ) mRNA transcriptional level were elevated in the periodontitis group compared to the normal group. In conclusion, the mRNA transcriptional level of Bmal1, Per2, and Cry1 in alveolar bone of normal mice has circadian rhythm, but the rhythm disappears under the condition of periodontitis, and the cause of its occurrence may be related to inflammatory cytokines.


Assuntos
Relógios Circadianos , Periodontite , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Projetos Piloto , Microtomografia por Raio-X , Fatores de Transcrição ARNTL/genética , RNA Mensageiro/metabolismo , Periodontite/genética , Proteínas CLOCK/genética
3.
Clin Pharmacokinet ; 62(6): 921-930, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142851

RESUMO

BACKGROUND AND OBJECTIVE: Pirfenidone is an antifibrotic agent that has been proven to slow down the progression of idiopathic pulmonary fibrosis (IPF). This study aimed to characterize the population pharmacokinetics (PK) and exposure-efficacy analysis of pirfenidone in patients with IPF. METHODS: Data from 10 hospitals with 106 patients were used to develop a population PK model. The annual decline in forced vital capacity (FVC) over 52 weeks was integrated with pirfenidone plasma concentration to characterize the exposure-efficacy relationship. RESULTS: A linear one-compartment model with first-order absorption and elimination processes and lag time best described the pirfenidone PK. The population estimates of clearance and central volume of distribution at steady-state were 13.37 L/h and 53.62 L, respectively. Bodyweight and food were statistically correlated with PK variability but had no significant influence on pirfenidone exposure. Annual decline in FVC with pirfenidone plasma concentration was described by a maximum drug effect (Emax) model. The typical EC50 was 1.73 mg/L (1.18-2.31 mg/L) and the corresponding EC80 was 2.18 mg/L (1.49-2.87 mg/L). Simulations showed that two dosing regimens of 500 and 600 mg three times daily were predicted to generate 80% of the Emax. CONCLUSIONS: In patients with IPF, covariates such as bodyweight and food might not be sufficient for dose adjustment, and a low dose of 1500 mg/day could also provide 80% of the Emax, as the standard dose (1800 mg/day).


Assuntos
Anti-Inflamatórios não Esteroides , Fibrose Pulmonar Idiopática , Humanos , Resultado do Tratamento , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Capacidade Vital , Piridonas
4.
J Oleo Sci ; 72(4): 389-397, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36908178

RESUMO

The objective of this study was to characterize the lipid class and fatty acid composition of four kinds of marine oils including Phaeodactylum tricornutum oil (PO), Laminaria japonica oil (LO), krill oil (KO) and fish oil (FO), and evaluate their antioxidant capacities in vitro. The results indicated that compared to other three oils, PO showed the highest contents of total lipids and fucoxanthin (194.70 and 7.48 mg/g dry weight, respectively), the relatively higher content of long-chain polyunsaturated fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (30.94 % in total fatty acids), and total phenolic content (675.88 mg gallic acid equivalent /100 g lipids), thereby contribute to great advantages in scavenging free radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS), peroxyl radical, as well as reducing FRAP value. In conclusion, PO should be considered as a potential ingredient for dietary supplement with antioxidant capacity.


Assuntos
Antioxidantes , Óleos de Peixe , Antioxidantes/farmacologia , Óleos de Peixe/química , Ácido Eicosapentaenoico , Ácidos Graxos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos
5.
Front Pharmacol ; 14: 1109084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937847

RESUMO

Strongylocentrotus nudus egg polysaccharide (SEP) extracted from sea urchins has potential anticancer activity. However, little is known about its pharmacokinetic properties. To investigate the pharmacokinetics of SEP, it was radiolabeled with tritium. Furthermore, a sensitive, selective, and rapid liquid scintillation counter (LSC) method for quantifying 3H-SEP in biological matrix was validated. The lower quantification limit of the method was 4 Bq. The relative standard deviations (RSDs) of the intra- and inter-day precision were <3.0% and <3.9%, respectively. 3H-SEP was successfully applied to investigate the pharmacokinetics of SEP after intravenous administration of 20, 40, and 80 mg/kg (40 µCi/kg) in rats and 5, 10, and 20 mg/kg (6 µCi/kg) in beagles. The AUC(0-t) of SEP at three different doses was 487.81 ± 39.99 mg/L*h, 1,003.10 ± 95.94 mg/L*h, and 2,188.84 ± 137.73 mg/L*h in rats and 144.12 ± 3.78 mg/L*h, 322.62 ± 28.03 mg/L*h, and 754.17 ± 37.79 mg/L*h in beagles. The terminal elimination half-life (t1/2) of SEP was longer in beagles (204.29 ± 139.34 h) than in rats (35.48 ± 6.04 h). The concentration of SEP in plasma declined rapidly in both rats and beagles. All the study results provide detailed pharmacokinetic profiles of SEP in two kinds of animals, which will be helpful for further development.

6.
Front Nutr ; 10: 996675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819690

RESUMO

Introduction: Allium macrostemon Bge. (AMB) and Allium chinense G. Don (ACGD) are both edible Allium vegetables and named officinal Xiebai (or Allii Macrostemonis Bulbus) in East Asia. Their medicinal qualities involve in lipid lowering and anti-atherosclerosis effects. And steroidal saponins, nitrogenous compounds and sulfur compounds are like the beneficial components responsible for medicinal functions. Sulfur compounds are the recognized main components both in the volatile oils of AMB and ACGD. Besides, few researches were reported about their holistic chemical profiles of volatile organic compounds (VOCs) and pharmacodynamic effects. Methods: In this study, we first investigated the lipid-lowering and anti-atherosclerotic effects of volatile oils derived from AMB and ACGD in ApoE -/- mice with high fat and high cholesterol diets. Results: The results showed the volatile oils of AMB and ACGD both could markedly reduce serum levels of TG, TC, and LDL-C (p < 0.05), and had no alterations of HDL-C, ALT, and AST levels (p > 0.05). Pathological results displayed they both could obviously improve the morphology of cardiomyocytes and the degree of myocardial fibrosis in model mice. Meanwhile, oil red O staining results also proved they could apparently decrease the lesion areas of plaques in the aortic intima (p < 0.05). Furthermore, head space solid phase microextraction coupled with gas chromatography tandem mass spectrometry combined with metabolomics analysis was performed to characterize the VOCs profiles of AMB and ACGD, and screen their differential VOCs. A total of 121 and 115 VOCs were identified or tentatively characterized in the volatile oils of AMB and ACGD, respectively. Relative-quantification results also confirmed sulfur compounds, aldehydes, and heterocyclic compounds accounted for about 85.6% in AMB bulbs, while approximately 86.6% in ACGD bulbs were attributed to sulfur compounds, ketones, and heterocyclic compounds. Multivariate statistical analysis showed 62 differentially expressed VOCs were observed between AMB and ACGD, of which 17 sulfur compounds were found to be closely associated with the garlic flavor and efficacy. Discussion: Taken together, this study was the first analysis of holistic chemical profiles and anti-atherosclerosis effects of AMB and ACGD volatile oils, and would benefit the understanding of effective components in AMB and ACGD.

7.
J Agric Food Chem ; 71(5): 2399-2410, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705628

RESUMO

Genipin (GP), the reactive metabolite of geniposide (GE), is responsible for GE-induced hepatotoxicity. As a potential detoxification pathway, the inactivation of GP by glutathione S-transferases (GSTs) has not yet been characterized. In this study, the thiol-GSH conjugates of GP, M532-1 and M532-2 were first identified and the catalytic activities of GSTs were investigated both in vitro and in vivo. GSTA1-1 and GSTA4-4 showed high activity in the formation of both thiol-GSH conjugates, whereas GSTA4-4 specifically catalyzed M532-2 formation in vitro. The active GST isoforms protect against alkylation of N-acetylcysteine (NAC), a classic model nucleophile. GST inhibition attenuated M532-1 formation in rat bile, confirming the in vivo catalytic role of GSTs. In conclusion, this study demonstrated the inactivation of GP by GSTs and implied that interindividual variability of GSTs may be a risk factor for susceptibility to GE-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos , Animais , Fígado/metabolismo , Glutationa Transferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Compostos de Sulfidrila/metabolismo
8.
J Endourol ; 37(4): 474-494, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36266993

RESUMO

Introduction: Previous systematic reviews related to machine learning (ML) in urology often overlooked the literature related to endourology. Therefore, we aim to conduct a more focused systematic review examining the use of ML algorithms for the management of benign prostatic hyperplasia (BPH) or urolithiasis. In addition, we are the first group to evaluate these articles using the Standardized Reporting of Machine Learning Applications in Urology (STREAM-URO) framework. Methods: Searches of MEDLINE, Embase, and the Cochrane CENTRAL databases were conducted from inception through July 12, 2021. Keywords included those related to ML, endourology, urolithiasis, and BPH. Two reviewers screened the citations that were eligible for title, abstract, and full-text screening, with conflicts resolved by a third reviewer. Two reviewers extracted information from the studies, with discrepancies resolved by a third reviewer. The data collected were then qualitatively synthesized by consensus. Two reviewers evaluated each article according to the STREAM-URO checklist with discrepancies resolved by a third reviewer. Results: After identifying 459 unique citations, 63 articles were retained for data extraction. Most articles consisted of tabular (n = 32) and computer vision (n = 23) tasks. The two most common problem types were classification (n = 40) and regression (n = 12). In general, most studies utilized neural networks as their ML algorithm (n = 36). Among the 63 studies retrieved, 58 were related to urolithiasis and 5 focused on BPH. The urolithiasis studies were designed for outcome prediction (n = 20), stone classification (n = 18), diagnostics (n = 17), and therapeutics (n = 3). The BPH studies were designed for outcome prediction (n = 2), diagnostics (n = 2), and therapeutics (n = 1). On average, the urolithiasis and BPH articles met 13.8 (standard deviation 2.6), and 13.4 (4.1) of the 26 STREAM-URO framework criteria, respectively. Conclusions: The majority of the retrieved studies effectively helped with outcome prediction, diagnostics, and therapeutics for both urolithiasis and BPH. While ML shows great promise in improving patient care, it is important to adhere to the recently developed STREAM-URO framework to ensure the development of high-quality ML studies.


Assuntos
Hiperplasia Prostática , Urolitíase , Masculino , Humanos , Hiperplasia Prostática/diagnóstico , Urolitíase/diagnóstico , Urolitíase/terapia , Aprendizado de Máquina
9.
J Agric Food Chem ; 71(1): 331-346, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538288

RESUMO

Pterostilbene (PTE), a dietary derivative of resveratrol, displayed pleiotropic health-promoting activities. This study aimed to explore the metabolic profiles and species differences of the phase I metabolism of PTE and to investigate subsequent detoxification after PTE bioactivation. PTE was found to be biotransformed to two pharmacologically active metabolites, pinostilbene and 3'-hydroxypterostilbene, in vivo and in vitro with substantial species differences. Human CYP1A2 was proved to be mainly responsible for the demethylation and 3'-hydroxylation of PTE, with its contribution to a demethylation of 94.5% and to a 3'-hydroxylation of 97.9%. An in vitro glutathione trapping experiment revealed the presence of an ortho-quinone intermediate formed by further oxidation of 3'-hydroxypterostilbene. Human glutathione S-transferase isoforms A2, T1, and A1 inactivated the ortho-quinone intermediate by catalyzing glutathione conjugation, implicating a potential protective pathway against PTE bioactivation-derived toxicity. Overall, this study provided a comprehensive view of PTE phase I metabolism and facilitated its further development as a promising nutraceutical.


Assuntos
Isoenzimas , Quinonas , Humanos , Resveratrol , Especificidade da Espécie , Glutationa/metabolismo
10.
Psychopharmacology (Berl) ; 239(11): 3579-3593, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36221038

RESUMO

RATIONALE: Tau hyperphosphorylation and aggregation is considered as a main pathological mechanism underlying Alzheimer's disease (AD). Rose Bengal (RB) is a synthetic dye used for disease diagnosis, which was reported to inhibit tau toxicity via inhibiting tau aggregation in Drosophila. However, it was unknown if RB could produce anti-AD effects in rodents. OBJECTIVES: The research aimed to investigate if and how RB could prevent ß-amyloid (Aß) oligomers-induced tau hyperphosphorylation in rodents. METHODS AND RESULTS: RB was tested in vitro (0.3-1 µM) and prevented Aß oligomers-induced tau hyperphosphorylation in PC12 cells. Moreover, RB (10-30 mg/kg, i.p.) effectively attenuated cognitive impairments induced by Aß oligomers in mice. Western blotting analysis demonstrated that RB significantly increased the expression of pSer473-Akt, pSer9-glycogen synthase kinase-3ß (GSK3ß) and reduced the expression of cyclin-dependent kinase 5 (CDK5) both in vitro and in vivo. Molecular docking analysis suggested that RB might directly interact with GSK3ß and CDK5 by acting on ATP binding sites. Gene Ontology enrichment analysis indicated that RB might act on protein phosphorylation pathways to inhibit tau hyperphosphorylation. CONCLUSIONS: RB was shown to inhibit tau neurotoxicity at least partially via inhibiting the activity of GSK3ß and CDK5, which is a novel neuroprotective mechanism besides the inhibition of tau aggregation. As tau hyperphosphorylation is an important target for AD therapy, this study also provided support for investigating the drug repurposing of RB as an anti-AD drug candidate.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Ratos , Camundongos , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas tau/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rosa Bengala/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Fosforilação , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/uso terapêutico
11.
Comput Intell Neurosci ; 2022: 5766448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035819

RESUMO

In view of the current situation of excessively rapid growth of building energy consumption, a control strategy of external shading louvers based on comprehensive energy consumption is proposed to deeply tap the potential of building energy saving. First, the architectural design software Ecotect is used to establish a simulation model of a shading building in Zhengzhou and import it into the lighting analysis software Daysim and the energy consumption simulation software Energyplus to simulate the annual lighting energy consumption and air-conditioning at 11 kinds of blind angles (15∼165°). For heating energy consumption, take the blind angle corresponding to the minimum comprehensive energy consumption as the opening angle of the dynamic blinds and analyze the comprehensive energy consumption for the whole year under dynamic sunshading. The results show that, compared with the conventional control strategy, the optimized control strategy based on comprehensive energy consumption can greatly improve the building's energy-saving rate.


Assuntos
Calefação , Iluminação , Simulação por Computador
12.
J Ovarian Res ; 15(1): 96, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35971131

RESUMO

Pegylated liposomal doxorubicin (PLD) is a nano-doxorubicin anticancer agent. It was used as early as 2014 to treat ovarian and breast cancer, multiple myeloma and Kaposi's sarcoma. The 2018 National Comprehensive Cancer Network guidelines listed PLD as first-line chemotherapy for ovarian cancer. PLD has significant anticancer efficacy and good tolerance. Although PLD significantly reduces the cardiotoxicity of conventional doxorubicin, its cumulative-dose cardiotoxicity remains a clinical concern. This study summarizes the high-risk factors for PLD-induced cardiotoxicity, clinical dose thresholds, and cardiac function testing modalities. For patients with advanced, refractory, and recurrent malignant tumors, the use of PLD is still one of the most effective strategies in the absence of evidence of high risk such as cardiac dysfunction, and the lifetime treatment dose should be unlimited. Of course, they should also be comprehensively evaluated in combination with the high-risk factors of the patients themselves and indicators of cardiac function. This review can help guide better clinical use of PLD.


Assuntos
Antibióticos Antineoplásicos , Neoplasias Ovarianas , Antibióticos Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Doxorrubicina/análogos & derivados , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/complicações , Polietilenoglicóis
13.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1451-1458, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35729119

RESUMO

Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ammonia (NH3) emitted during the composting of livestock and poultry waste are important gaseous atmospheric pollutants. However, most previous studies on compost-related anthropogenic emissions of these gases were based on small reactor composting. Our understanding of their in situ emissions during industrial composting remains extremely limited. In order to explore the influence of gas produced by industrial composting on regional environment, we monitored CO2, CH4, N2O and NH3 emissions during industrial composting for 19 days and characterized the isotopic composition of emitted NH3. On average, the emission rates of CO2, CH4, N2O, and NH3 during the composting cycle were 86.8 g CO2-C·d-1·m-2, 9.8 g CH4-C·d-1·m-2, 3.7 mg N2O-N·d-1·m-2 and 736.6 mg NH3-N·d-1·m-2, respectively. The contribution of CH4 to daily global warming potential (GWP) was the highest (65%), followed by CO2, NH3(indirect), and N2O. Moreover, ammonia emitted from industrial compost had a mean δ15N value of -11.6‰±1.2‰ (range: -21.8‰--7.2‰). Overall, this study provided useful information for understanding greenhouse gas emission dynamics and characterizing atmospheric NH3 sources during composting process in livestock and poultry breeding areas.


Assuntos
Compostagem , Gases de Efeito Estufa , Amônia/análise , Dióxido de Carbono/análise , Gases/análise , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo
14.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163593

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer with a poor prognosis. The incidence and mortality rate of TNBC are frequently found in younger women. Due to the absence of a good therapeutic strategy, effective remedies for inhibiting TNBC have been developed for improving the cure rate. Epithelial-to-mesenchymal transition (EMT) is a critical mechanism to regulate cancer cell motility and invasion. Furthermore, ectopic expression of EMT molecules correlates with the metastasis and poor prognosis of TNBC. Targeting EMT might be a strategy for the therapy and prevention of TNBC. Propolin G, an active c-prenylflavanone in Taiwanese propolis, has been shown to possess anti-cancer activity in many cancers. However, the anti-metastasis activity of propolin G on TNBC is still unclear. The present study showed that the migration and invasion activities of TNBC cells was suppressed by propolin G. Down-regulated expression of Snail and vimentin and up-regulated expression of E-cadherin were dose- and time-dependently observed in propolin G-treated MDA-MB-231 cells. Propolin G inhibited Snail and vimentin expressions via the signaling pathways associated with post-translational modification. The activation of glycogen synthase kinase 3ß (GSK-3ß) by propolin G resulted in increasing GSK-3ß interaction with Snail. Consequently, the nuclear localization and stability of Snail was disrupted resulting in promoting the degradation. Propolin G-inhibited Snail expression and the activities of migration and invasion were reversed by GSK-3ß inhibitor pretreatment. Meanwhile, the outcomes also revealed that histone deacetylase 6 (HDAC6) activity was dose-dependently suppressed by propolin G. Correspondently, the amounts of acetyl-α-tubulin, a down-stream substrate of HDAC6, were increased. Dissociation of HDAC6/Hsp90 with vimentin leading to increased vimentin acetylation and degradation was perceived in the cells with the addition of propolin G. Moreover, up-regulated expression of acetyl-α-tubulin by propolin G was attenuated by HDAC6 overexpression. On the contrary, down-regulated expression of vimentin, cell migration and invasion by propolin G were overturned by HDAC6 overexpression. Conclusively, restraint cell migration and invasion of TNBC by propolin G were activated by the expression of GSK-3ß-suppressed Snail and the interruption of HDAC6-mediated vimentin protein stability. Aiming at EMT, propolin G might be a potential candidate for TNBC therapy.


Assuntos
Cumarínicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavanonas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Vimentina/metabolismo , Linhagem Celular Tumoral , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Desacetilase 6 de Histona/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Vimentina/genética
15.
Biomed Environ Sci ; 35(12): 1115-1125, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36597291

RESUMO

Objective: To develop an effective treatment strategy to simultaneously avoid fatal adverse effects in the treatment of oral cancer, combination therapy has been explored because of its multiple functions. This work aims to develop a novel type of gold-nanorod-based nanomaterials decorated with tetrahedral DNA nanostructures (TDN) carrying antitumor drugs, namely, GNR@TDN-DOX nanocomposites. Methods: In the designed structure, TDN, with a three-dimensional geometry composed of DNA strands, can provide GC base pairs for binding with the anticancer drug doxorubicin (DOX). The photothermal heating properties, biocompatibility properties, and antitumor performance of obtained GNR@TDN-DOX nanocomposites were investigated to assess their application potential in tumor treatment. Results: Systematic studies have shown that the obtained GNR@TDN-DOX nanocomposites have high photothermal conversion under the illumination of an 808-nm infrared laser, leading to effective antitumor applications. In addition, the cell viability study shows that GNR@TDN-DOX nanocomposites have good biocompatibility. In vitro studies based on A375 cells show that the GNR@TDN-DOX nanocomposites can effectively eliminate cancer cells because of the combination of photothermal therapy induced by GNRS and chemotherapy induced by TDN-carrying DOX. The result shows that the obtained GNR@TDN-DOX nanocomposites have efficient cellular uptake and lysosome escape ability, together with their nuclear uptake behavior, which results in a significant antitumor effect. Conclusion: This work has demonstrated a potential nanoplatform for anticancer applications.


Assuntos
Ouro , Nanotubos , Ouro/química , Terapia Fototérmica , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanotubos/química , DNA , Linhagem Celular Tumoral
16.
Phys Chem Chem Phys ; 23(11): 6800-6806, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33724276

RESUMO

Intrinsically disordered proteins (IDPs) are widely involved in human diseases and thus are attractive therapeutic targets. In practice, however, it is computationally prohibitive to dock large ligand libraries to thousands and tens of thousands of conformations. Here, we propose a reversible upper confidence bound (UCB) algorithm for the virtual screening of IDPs to address the influence of the conformation ensemble. The docking process is dynamically arranged so that attempts are focused near the boundary to separate top ligands from the bulk accurately. It is demonstrated in the example of transcription factor c-Myc that the average docking number per ligand can be greatly reduced while the performance is merely slightly affected. This study suggests that reinforcement learning is highly efficient in solving the bottleneck of virtual screening due to the conformation ensemble in the rational drug design of IDPs.


Assuntos
Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-myc/química , Algoritmos , Área Sob a Curva , Desenho de Fármacos , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Curva ROC
17.
J Pharm Sci ; 110(5): 2285-2294, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610566

RESUMO

Isobavachalcone, a naturally occurring chalcone in Psoralea corylifolia, posses many biological properties including anticancer, antiplatelet, and antifungal. However, its glucuronidation, glucuronides excretion, and drug-drug interaction (DDI) involving in human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) enzymes, and efflux transporters (BCRP and MRPs) remains unclear so far. After incubation, three glucuronides were produced by HLM and HIM with total intrinsic clearance (CLint) of 236.71 and 323.40 µL/min/mg, respectively. Reaction phenotyping proved UGT1A1, 1A3, 1A7, 1A8, and 1A9 played important roles in glucuronidation with total CLint values of 62.69-143.00 µL/min/mg. Activity correlation analysis indicated UGT1A1 and UGT1A3 participated more in the glucuronidation. In addition, the glucuronidation showed marked species differences, and rabbits and dogs were probably appropriate model animals to investigate the in vivo glucuronidation. Furthermore, BCRP, MRP1, and MRP4 transporters were identified as the most important contributors to glucuronides excretion in HeLa1A1 cells based on gene silencing method. Moreover, isobavachalcone demonstrated broad-spectrum inhibitory effects against CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, UGT1A1, UGT1A9, UGT2B7 with IC50 values of 1.08-9.78 µM. Except CYP2B6 and CYP2D6, the calculated [I]/Ki values for other enzymes were all greater than 0.1, indicating the inhibition of systemic metabolism or elimination for these enzyme substrates seems likely. Taken together, we summarized metabolic fates of isobavachalcone including glucuronidation and efflux transport as well as inhibitory effects involving in human CYP and UGT enzymes.


Assuntos
Chalconas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Chalconas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Glucuronídeos , Glucuronosiltransferase/metabolismo , Humanos , Cinética , Microssomos Hepáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Coelhos
18.
World J Gastrointest Oncol ; 13(12): 2129-2148, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35070047

RESUMO

BACKGROUND: BRAFV600E mutated colorectal cancer (CRC) is prone to peritoneal and distant lymph node metastasis and this correlates with a poor prognosis. The BRAFV600E mutation is closely related to the formation of an immunosuppressive microenvironment. However, the correlation between BRAFV600E mutation and changes in local immune microenvironment of CRC is not clear. AIM: To explore the effect and mechanism of BRAFV600E mutant on the immune microenvironment of CRC. METHODS: Thirty patients with CRC were included in this study: 20 in a control group and 10 in a treatment group. The density of microvessels and microlymphatic vessels, and M2 subtype macrophages in tumor tissues were detected by immunohistochemistry. Screening and functional analysis of exosomal long noncoding RNAs (lncRNAs) were performed by transcriptomics. The proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human lymphatic endothelial cells (HLECs) were detected by CCK-8 assay and scratch test, respectively. The tube-forming ability of endothelial cells was detected by tube formation assay. The macrophage subtypes were obtained by flow cytometry. The expression of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), transforming growth factor (TGF)-ß1, VEGF-C, claudin-5, occludin, zonula occludens (ZO)-1, fibroblast activation protein, and α-smooth muscle actin was assessed by western blot analysis. The levels of cytokines interleukin (IL)-6, TGF-ß1, and VEGF were assessed by enzyme-linked immunosorbent assay. RESULTS: BRAFV600E mutation was positively correlated with the increase of preoperative serum carbohydrate antigen 19-9 (P < 0.05), and with poor tumor tissue differentiation in CRC (P < 0.01). Microvascular density and microlymphatic vessel density in BRAFV600E mutant CRC tissues were higher than those in BRAF wild-type CRC (P < 0.05). The number of CD163+ M2 macrophages in BRAFV600E mutant CRC tumor tissue was markedly increased (P < 0.05). Compared with exosomes from CRC cells with BRAF gene silencing, the expression of 13 lncRNAs and 192 mRNAs in the exosomes from BRAFV600E mutant CRC cells was upregulated, and the expression of 22 lncRNAs and 236 mRNAs was downregulated (P < 0.05). The biological functions and signaling pathways predicted by differential lncRNA target genes and differential mRNAs were closely related to angiogenesis, tumor cell proliferation, differentiation, metabolism, and changes in the microenvironment. The proliferation, migration, and tube formation ability of HUVECs and HLECs induced by exosomes in the 1627 cell group (HT29 cells with BRAF gene silencing) was greatly reduced compared with the HT29 cell group (P < 0.05). Compared with the HT29 cell group, the expression levels of VEGF-A, bFGF, TGF-ß1, and VEGF-C in the exosomes derived from 1627 cells were reduced. The expression of ZO-1 in HUVECs, and claudin-5, occludin, and ZO-1 in HLECs of the 1627 cell group was higher. Compared with the 1627 cell group, the exosomes of the HT29 cell group promoted the expression of CD163 in macrophages (P < 0.05). IL-6 secretion by macrophages in the HT29 cell group was markedly elevated (P < 0.05), whereas TGF-ß1 was decreased (P < 0.05). The levels of IL-6, TGF-ß1, and VEGF secreted by fibroblasts in the 1627 cell group decreased, compared with the HT29 cell group (P < 0.05). CONCLUSION: BRAFV600E mutant CRC cells can reach the tumor microenvironment by releasing exosomal lncRNAs, and induce the formation of an immunosuppressive microenvironment.

19.
Chin Med ; 15: 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655683

RESUMO

BACKGROUND: Kang-Ai injection is widely used as an adjuvant therapy drug for many cancers, leukopenia, and chronic hepatitis B. Circulating alkaloids and saponins are believed to be responsible for therapeutic effects. However, their pharmacokinetics (PK) and excretion in vivo and the risk of drug-drug interactions (DDI) through inhibiting human cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes remain unclear. METHODS: PK and excretion of circulating compounds were investigated in rats using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method. Further, the inhibitory effects of nine major compounds against eleven CYP and UGT isozymes were assayed using well-accepted specific substrate for each enzyme. RESULTS: After dosing, 9 alkaloids were found with C max and t 1/2 values of 0.17-422.70 µmol/L and 1.78-4.33 h, respectively. Additionally, 28 saponins exhibited considerable systemic exposure with t 1/2 values of 0.63-7.22 h, whereas other trace saponins could be negligible or undetected. Besides, over 90% of alkaloids were excreted through hepatobiliary and renal excretion. Likewise, astragalosides and protopanaxatriol (PPT) type ginsenosides also involved in hepatobiliary and/or renal excretion. Protopanaxadiol (PPD) type ginsenosides were mainly excreted to urine. Furthermore, PPD-type ginsenosides were extensively bound (f u-plasma approximately 1%), whereas astragalosides and PPT-type ginsenosides displayed f u-plasma values of 12.35% and 60.23-87.36%, respectively. Moreover, matrine, oxymatrine, astragaloside IV, ginsenoside Rg1, ginsenoside Re, ginsenoside Rd, ginsenoside Rc, and ginsenoside Rb1 exhibited no inhibition or weak inhibition against several common CYP and UGT enzymes IC50 values between 8.81 and 92.21 µM. Through kinetic modeling, their inhibition mechanisms towards those CYP and UGT isozymes were explored with obtained Ki values. In vitro-in vivo extrapolation showed the inhibition of systemic clearance for CYP or UGT substrates seemed impossible due to [I]/Ki no more than 0.1. CONCLUSIONS: We summarized the PK behaviors, excretion characteristics and protein binding rates of circulating alkaloids, astragalosides and ginsenosides after intravenous Kang-Ai injection. Furthermore, weak inhibition or no inhibition towards these CYP and UGT activities could not trigger harmful DDI when Kang-Ai injection is co-administered with clinical drugs primarily cleared by these CYP or UGT isozymes.

20.
Plant Sci ; 293: 110442, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081255

RESUMO

NAC proteins represent one of the largest transcription factor (TF) families involved in the regulation of plant development and the response to abiotic stress. In the present study, we elucidated the detailed role of GmNAC8 in the regulation of drought stress tolerance in soybean. The GmNAC8 protein was localized in the nucleus, and expression of the GmNAC8 gene was significantly induced in response to drought, abscisic acid (ABA), ethylene (ETH) and salicylic acid (SA) treatments. Thus, we generated GmNAC8 overexpression (OE1 and OE2) and GmNAC8 knockout (KO1 and KO2) lines to determine the role of GmNAC8 in drought stress tolerance. Our results revealed that, compared with the wild type (WT) plant, GmNAC8 overexpression and GmNAC8 knockout lines exhibited significantly higher and lower drought tolerance, respectively. Furthermore, the SOD activity and proline content were significantly higher in the GmNAC8 overexpression lines and significantly lower in the GmNAC8 knockout lines than in the WT plants under drought stress. In addition, GmNAC8 protein was found to physically interact with the drought-induced protein GmDi19-3 in the nucleus. Moreover, the GmDi19-3 expression pattern showed the same trend as the GmNAC8 gene did under drought and hormone (ABA, ETH and SA) treatments, and GmDi19-3 overexpression lines (GmDi19-3-OE9, GmDi19-3-OE10 and GmDi19-3-OE31) showed enhanced drought tolerance compared to that of the WT plants. Hence, the above results indicated that GmNAC8 acts as a positive regulator of drought tolerance in soybean and inferred that GmNAC8 probably functions by interacting with another positive regulatory protein, GmDi19-3.


Assuntos
Secas , Glycine max/genética , Glycine max/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Ácido Abscísico/metabolismo , Aclimatação/genética , Aclimatação/fisiologia , Sistemas CRISPR-Cas , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Mutagênese , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Nicotiana , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA